Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Prostate cancer (PCa) is the most common cancer diagnosis and the second most common cause of cancer-related deaths in men. Currently, serum prostate-specific antigen (PSA) is the only biomarker widely used in the diagnosis and management of patients with PCa. However, PSA lacks diagnostic sensitivity and specificity, leading to false-negative and false-positive test results. PSA cannot distinguish indolent from aggressive disease, leading to many patients being over-treated with associated side-effects. Furthermore, PSA is unable to identify which tumors are likely to become unresponsive to treatment at an early stage. Thus, there is an urgent need for clinically validated biomarkers which will improve the diagnosis and management of PCa. Given the heterogeneity of PCa it is likely that a panel of biomarkers will be required. In the quest for PCa biomarkers, a wide range of samples including urine, serum, tissues, and cell lines have been studied using proteomic approaches such as 2-DE, SELDI-TOF, SILAC, ICAT, iTRAQ, and MALDI-IMS. The value of these technologies, and other emerging platforms such as selected reaction monitoring (SRM) and multiple reaction monitoring (MRM), are discussed in the context of biomarker discovery, validation and addressing the "bottle-necks" that exist prior to clinical translation.

Original publication

DOI

10.1002/prca.200800154

Type

Journal article

Journal

Proteomics Clin Appl

Publication Date

02/2009

Volume

3

Pages

197 - 212

Keywords

ICAT, MRM, SELDI‐TOF‐MS, SILAC, SRM, iTRAQ