Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Glucagon secretion is regulated by glucose but the mechanisms involved remain hotly debated. Both intrinsic (within the α-cell itself) and paracrine (mediated by factors released β- and/or δ-cells) have been postulated. Glucagon secretion is maximally suppressed by glucose concentrations that do not affect insulin and somatostatin secretion, a finding that highlights the significance of intrinsic regulation of glucagon secretion. Experiments on islets from mice lacking functional ATP-sensitive potassium channels (K(ATP)-channels) indicate that these channels are critical to the α-cell's capacity to sense changes in extracellular glucose. Here, we review recent data on the intrinsic and paracrine regulation of glucagon secretion in human pancreatic islets. We propose that glucose-induced closure of the K(ATP)-channels, via membrane depolarization, culminates in reduced electrical activity and glucagon secretion by voltage-dependent inactivation of the ion channels involved in action potential firing. We further demonstrate that glucagon secretion measured in islets isolated from donors with type-2 diabetes is reduced at low glucose and that glucose stimulates rather than inhibits secretion in these islets. We finally discuss the relative significance of paracrine and intrinsic regulation in the fed and fasted states and propose a unifying model for the regulation of glucagon secretion that incorporates both modes of control.

Original publication

DOI

10.1111/j.1463-1326.2011.01450.x

Type

Journal article

Journal

Diabetes Obes Metab

Publication Date

10/2011

Volume

13 Suppl 1

Pages

95 - 105

Keywords

Animals, Biological Transport, Diabetes Mellitus, Experimental, Diabetes Mellitus, Type 2, Glucagon, Glucagon-Secreting Cells, Glucose, Humans, KATP Channels, Mice