Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Response inhibition as measured during a stop-signal task refers to the ability to halt an action that has already been set in motion. Cortical and sub-cortical structures, such as the subthalamic nucleus (STN), that are active during attempts to inhibit action are thought to contribute to a 'stop-process' that must gain dominance over a 'go-process' if inhibition is to be successful. We recorded local field potential activity from the STN of Parkinson's disease patients with implanted deep brain stimulation electrodes during a stop-signal task. In particular we measured activity in the STN that has traditionally been associated with motor action (gamma-band, 60-100 Hz) and inhibition (beta-band, 10-30 Hz). Our data support the idea that beta activity in the STN is related to the inhibition of motor action. Further, we report that gamma oscillatory activity responds robustly to stop-signals as well as go-signals. This unexpected finding might suggest that gamma activity supports a go-process that not only responds to go-signals, but is also sensitive to stimuli that signal stopping.

Original publication

DOI

10.1016/j.neuroimage.2011.12.035

Type

Journal article

Journal

Neuroimage

Publication Date

03/2012

Volume

60

Pages

271 - 278

Keywords

Adult, Aged, Humans, Inhibition (Psychology), Middle Aged, Reaction Time, Subthalamic Nucleus