Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Bacterial peritonitis is a life-threatening abdominal infection associated with high morbidity and mortality. The rat is a popular animal model for studying peritonitis and its treatment, but longitudinal monitoring of the progression of peritonitis in live animals has been impossible until now and thus required a large number of animals. Our objective was to develop a noninvasive in vivo imaging technique to monitor the spatiotemporal spread of bacterial peritonitis. METHODS: Peritonitis was induced in 8 immunocompetent male Wistar rats by placing fibrin clots containing 5x10(8) cells of both Bacteroides fragilis (American Type Tissue Culture [ATCC)] 25,285 and bioluminescent Escherichia coli Xen14. After 1 or 2 days, infected clots were removed and open abdomen lavage was performed. In vivo bioluminescent imaging was used to monitor the spread of peritonitis. RESULTS: Bioluminescent in vivo imaging showed an increase in the area of spread, and the number of E. coli tripled into the rat's abdominal cavity on day 1 after clot insertion; however, on day 2, encapsulation of the clot confined bacterial spread. Bioluminescent E. coli respread over the peritoneal cavity after lavage; within 10 days, however, in vivo imaging showed a decrease of 3-4 orders of magnitude in bacterial load. CONCLUSION: Bioluminescent in vivo imaging can be effectively used to monitor the spatiotemporal behavior of the peritonitis during 3 different stages of the disease process: initiation, treatment, and follow-up. Imaging allows researchers to repeatedly image the same animal, thereby reducing variability and providing greater confidence in determining treatment efficacies for therapeutic interventions using a small number of animals.

Original publication

DOI

10.1016/j.surg.2009.05.016

Type

Journal article

Journal

Surgery

Publication Date

01/2010

Volume

147

Pages

89 - 97

Keywords

Animals, Bacteroides fragilis, Diagnostic Imaging, Disease Progression, Escherichia coli, Luciferases, Bacterial, Luminescent Agents, Male, Peritoneal Lavage, Peritonitis, Rats, Rats, Wistar