Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Artificial intelligence tools, particularly convolutional neural networks (CNNs), are transforming healthcare by enhancing predictive, diagnostic, and decision-making capabilities. This review provides an accessible and practical explanation of CNNs for clinicians and highlights their relevance in medical image analysis. CNNs have shown themselves to be exceptionally useful in computer vision, a field that enables machines to 'see' and interpret visual data. Understanding how these models work can help clinicians leverage their full potential, especially as artificial intelligence continues to evolve and integrate into healthcare. CNNs have already demonstrated their efficacy in diverse medical fields, including radiology, histopathology, and medical photography. In radiology, CNNs have been used to automate the assessment of conditions such as pneumonia, pulmonary embolism, and rectal cancer. In histopathology, CNNs have been used to assess and classify colorectal polyps, gastric epithelial tumours, as well as assist in the assessment of multiple malignancies. In medical photography, CNNs have been used to assess retinal diseases and skin conditions, and to detect gastric and colorectal polyps during endoscopic procedures. In surgical laparoscopy, they may provide intraoperative assistance to surgeons, helping interpret surgical anatomy and demonstrate safe dissection zones. The integration of CNNs into medical image analysis promises to enhance diagnostic accuracy, streamline workflow efficiency, and expand access to expert-level image analysis, contributing to the ultimate goal of delivering further improvements in patient and healthcare outcomes.

Original publication

DOI

10.1093/postmj/qgad095

Type

Journal article

Journal

Postgrad Med J

Publication Date

20/11/2023

Volume

99

Pages

1287 - 1294

Keywords

biotechnology & bioinformatics, education and training, radiology & imaging, Humans, Artificial Intelligence, Colonic Polyps, Neural Networks, Computer, Computers, Radiology