Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Obesity has become a global epidemic influencing the establishment and progression of a wide range of diseases, such as diabetes, cardiovascular disease, and cancer. In 2016, International Agency for Research on Cancer reported that obesity is now associated with 13 different cancers, one of which is multiple myeloma (MM), a destructive cancer of plasma cells that predominantly reside in the bone marrow. Obesity is the accumulation of excess body fat, which causes metabolic, endocrine, immunologic, and inflammatory-like changes. Obesity is usually associated with an increase in visceral and/or subcutaneous fat; however, an additional fat depot that also responds to diet-induced changes is bone marrow adipose tissue (BMAT). There have been several studies over the past few decades that have identified BMAT as a key driver in MM progression. Adipocytes secrete numerous adipokines, such as leptin, adiponectin, resistin, adipsin, and visfatin, which when secreted at normal controlled levels have protective properties. However, in obesity these levels of secretion change, coupled with an increase in adipocyte number and size causing a profound and lasting effect on the bone microenvironment, contributing to MM cell growth, survival, and migration as well as potentially fueling bone destruction. Obesity is a modifiable risk factor making it an attractive option for targeted therapy. This review discusses the link between obesity, monoclonal gammopathy of undetermined significance (a benign condition that precedes MM), and myeloma, and the contribution of key adipokines to disease establishment and progression.

Original publication

DOI

10.1002/jcp.26884

Type

Journal article

Journal

J Cell Physiol

Publication Date

12/2018

Volume

233

Pages

9159 - 9166

Keywords

adipokines, adiponectin, bone marrow (BM) adipocytes, multiple myeloma (MM), obesity, Adipocytes, Adipokines, Adiposity, Bone Marrow Cells, Humans, Multiple Myeloma, Obesity, Tumor Microenvironment