Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The human hand is a unique and highly complex effector. The ability to describe hand kinematics with a small number of features suggests that complex hand movements are composed of combinations of simpler movements. This would greatly simplify the neural control of hand movements. If such movement primitives exist, a dimensionality reduction approach designed to exploit these features should outperform existing methods. We developed a deep neural network to capture the temporal dynamics of movements and demonstrate that the features learned allow accurate representation of functional hand movements using lower-dimensional representations than previously reported. We show that these temporal features are highly conserved across individuals and can interpolate previously unseen movements, indicating that they capture the intrinsic structure of hand movements. These results indicate that functional hand movements are defined by a low-dimensional basis set of movement primitives with important temporal dynamics and that these features are common across individuals.

Type

Journal article

Journal

iScience

Publisher

Elsevier (Cell Press)

Publication Date

18/10/2022