Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Kidney stone disease (KSD) affects ~10% of adults, is heritable, and associated with mineral metabolic abnormalities. METHODS: Genetic variants and pathways increasing KSD risk via calcium and phosphate homeostasis were ascertained using genome-wide association analyses, region-specific Mendelian randomization (MR), and genetic colocalization. Utility of pathway modulation was estimated via drug-target MR, and effects of variants on calcium-sensing receptor (CaSR)-signaling characterized. RESULTS: Seventy-nine independent KSD-associated genetic signals at 71 loci were identified. MR identified three loci affecting KSD risk via increased serum calcium or decreased serum phosphate concentrations (odds ratios for genomic regions=4.30, 11.42, and 13.83 per 1 standard deviation alteration; p<5.6x10-10). Colocalization analyses defined putative, non-coding KSD-causing variants estimated to account for 11-19% of KSD cases in proximity to diacylglycerol kinase delta (DGKD), a CaSR-signalling partner; solute carrier family 34 member 1 (SLC34A1), a renal sodium-phosphate transporter; and cytochrome P450 family 24 subfamily A member 1 (CYP24A1), which degrades 1,25-dihydroxyvitamin D. Drug- target MR indicated that reducing serum calcium by 0.08mmol/L via CASR, DGKD, or CYP24A1, or increasing serum phosphate by 0.16mmol/L via SLC34A1 may reduce KSD relative risk by up to 90%. Furthermore, reduced DGKδ expression and KSD-associated DGKD missense variants impaired CaSR-signal transduction in vitro, which was ameliorated by cinacalcet, a positive CaSR-allosteric modulator. CONCLUSION: DGKD-, SLC34A1-, and CYP24A1-associated variants linked to reduced CaSR-signal transduction, increased urinary phosphate excretion, and impaired 1,25-dihydroxyvitamin D inactivation, respectively, are common causes of KSD. Genotyping patients with KSD may facilitate personalised KSD-risk stratification and targeted pharmacomodulation of associated pathways to prevent KSD.

Original publication

DOI

10.1172/JCI186915

Type

Journal article

Journal

J Clin Invest

Publication Date

15/05/2025

Keywords

Calcium signaling, Endocrinology, Genetic variation, Genetics, Nephrology, Urology