Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In organ transplantation, the composition of the B-cell compartment is increasingly identified as an important determinant for graft outcome. Whereas naïve and transitional B cells have been associated with long-term allograft survival and operational tolerance, memory B cells have been linked to decreased allograft survival. Alemtuzumab induction therapy effectively depletes B cells, but is followed by rapid repopulation up to levels exceeding base line. The characteristics of the repopulating B cells are currently unknown. We studied the phenotypic and functional characteristics of B cells longitudinally in 19 kidney transplant recipients, before and at 6, 9 and 12 months after alemtuzumab induction therapy. A transient increase in transitional B cells and cells with phenotypic characteristics of regulatory B cells, as well as a long-term dominance in naïve B cells was found in alemtuzumab-treated kidney transplant recipients, which was not influenced by conversion from tacrolimus to sirolimus. At all time-points after treatment, B cells showed unaltered proliferative and IgM-producing capacity as compared to pretransplant samples, whereas the ability to produce IgG was inhibited long-term. In conclusion, induction therapy with alemtuzumab results in a long-term shift toward naïve B cells with altered phenotypic and functional characteristics.

Original publication

DOI

10.1111/j.1600-6143.2012.04012.x

Type

Journal article

Journal

Am J Transplant

Publication Date

07/2012

Volume

12

Pages

1784 - 1792

Keywords

Alemtuzumab, Antibodies, Monoclonal, Humanized, B-Lymphocytes, Cell Division, Flow Cytometry, Humans, Immunosuppressive Agents, Kidney Transplantation