Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

OBJECTIVES: Low patency rates of saphenous vein grafts remain a major predicament in surgical revascularization. We examined a novel expandable external support device designed to mitigate causative factors for early and late graft failure. METHODS: For this study, fourteen adult sheep underwent cardiac revascularization using two vein grafts for each; one to the LAD and the other to the obtuse marginal artery. One graft was supported with the device while the other served as a control. Target vessel was alternated between consecutive cases. The animals underwent immediate and late angiography and were then sacrificed for histopathologic evaluation. RESULTS: Of the fourteen animals studied, three died peri-operatively (unrelated to device implanted), and ten survived the follow-up period. Among surviving animals, three grafts were thrombosed and one was occluded, all in the control group (p = 0.043). Quantitative angiographic evaluation revealed no difference between groups in immediate level of graft uniformity, with a coefficient-of-variance (CV%) of 7.39 in control versus 5.07 in the supported grafts, p = 0.082. At 12 weeks, there was a significant non-uniformity in the control grafts versus the supported grafts (CV = 22.12 versus 3.01, p < 0.002). In histopathologic evaluation, mean intimal area of the supported grafts was significantly lower than in the control grafts (11.2 mm^2 versus 23.1 mm^2 p < 0.02). CONCLUSIONS: The expandable SVG external support system was found to be efficacious in reducing SVG's non-uniform dilatation and neointimal formation in an animal model early after CABG. This novel technology may have the potential to improve SVG patency rates after surgical myocardial revascularization.

Original publication

DOI

10.1186/1749-8090-8-122

Type

Journal article

Journal

J Cardiothorac Surg

Publication Date

06/05/2013

Volume

8

Keywords

Animals, Coronary Angiography, Coronary Artery Bypass, Coronary Artery Disease, Coronary Vessels, Disease Models, Animal, Equipment Design, Female, Saphenous Vein, Sheep, Vascular Patency