Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The novel mitogen/extracellular-signal-regulated kinase kinase 5/extracellular signal-regulated kinase-5 (MEK5/ERK5) pathway has been implicated in the regulation of cellular proliferation. MEK5 expression has been detected in prostate cancer cells, although the significance of the MEK5/ERK5 pathway in human prostate cancer has not been tested. We examined MEK5 expression in 127 cases of prostate cancer and 20 cases of benign prostatic hypertrophy (BPH) by immunohistochemistry and compared the results to clinical parameters. We demonstrated that MEK5 expression is increased in prostate cancer as compared to benign prostatic tissue. Strong MEK5 expression correlates with the presence of bony metastases and less favourable disease-specific survival. Furthermore, among the patients with high Gleason score of 8-10, MEK5 overexpression has an additional prognostic value in survival. MEK5 transfection experiments confirm its ability to induce proliferation (P < 0.0001), motility (P = 0.0001) and invasion in prostate cancer cells (P = 0.0001). MEK5 expression drastically increased MMP-9, but not MMP-2 mRNA expression. Luciferase report assays suggest that the -670/MMP-9 promoter is upregulated by MEK5 and electromobility shift assay further suggests the involvement of activator protein-I (AP-1), but not the NF-kappa B, binding site in the MMP-9 promoter. Using an AP-1 luciferase construct, activation of MEK5 was confirmed to enhance AP-1 activities up to twofold. Taken together, our results establish MEK5 as a key signalling molecule associated with prostate carcinogenesis. As the MEK5/ERK5 interaction is highly specific, it represents a potential target of therapy.

Original publication

DOI

10.1038/sj.onc.1206154

Type

Journal article

Journal

Oncogene

Publication Date

06/03/2003

Volume

22

Pages

1381 - 1389

Keywords

Adenocarcinoma, Adult, Aged, Aged, 80 and over, Bone Neoplasms, Cell Division, Cell Line, Cell Movement, Collagen, Drug Combinations, Enzyme Induction, Gene Expression Regulation, Neoplastic, Humans, Kidney, Laminin, MAP Kinase Kinase 5, Male, Matrix Metalloproteinase 2, Matrix Metalloproteinase 9, Middle Aged, Mitogen-Activated Protein Kinase Kinases, Neoplasm Invasiveness, Neoplasm Proteins, Prostatic Hyperplasia, Prostatic Neoplasms, Proteoglycans, Recombinant Fusion Proteins, Signal Transduction, Survival Analysis, Transcription Factor AP-1, Transfection, Tumor Cells, Cultured