Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Prostate cancer is the second most common malignancy in men in the UK. The disease is unpredictable in its behaviour and, at present, no single investigative method allows clinicians to differentiate between tumours that will progress and those that will remain quiescent. There is an increasing need for novel means to predict prognosis and outcome of the disease. The aim of this study was to assess the value of artificial neural networks in predicting outcome in prostate cancer in comparison with statistical methods, using a combination of conventional and experimental biological markers. Forty-one patients with different stages and grades of prostate cancer undergoing a variety of treatments were analysed. Artificial neural networks were used as follows: eight input neurons consisting of six conventional factors (age, stage, bone scan findings, grade, serum PSA, treatment) and two experimental markers (immunostaining for bcl-2 and p53, which are both apoptosis-regulating genes). Twenty-one patients were used for training and 20 for testing. A total of 80% of the patients were correctly classified regarding outcome using the combination of factors. When both bcl-2 and p53 immunoreactivity were excluded from the analysis, correct prediction of the outcome was achieved in only 60% of the patients (P = 0.0032). This study was able to demonstrate the value of artificial neural networks in the analysis of prognostic markers in prostate cancer. In addition, the potential for using this technology to evaluate novel markers is highlighted. Further large-scale analyses are required to incorporate this methodology into routine clinical practice.

Type

Journal article

Journal

Br J Cancer

Publication Date

07/1998

Volume

78

Pages

246 - 250

Keywords

Aged, Aged, 80 and over, Humans, Immunohistochemistry, Male, Middle Aged, Neural Networks (Computer), Pilot Projects, Prostatic Neoplasms, Proto-Oncogene Proteins c-bcl-2, Tumor Suppressor Protein p53