Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Motivation: Testing SNP-SNP interactions is considered as a key for overcoming bottlenecks of genetic association studies. However, related statistical methods for testing SNP-SNP interactions are underdeveloped. Results: We propose the SNP Interaction Pattern Identifier (SIPI), which tests 45 biologically meaningful interaction patterns for a binary outcome. SIPI takes non-hierarchical models, inheritance modes and mode coding direction into consideration. The simulation results show that SIPI has higher power than MDR (Multifactor Dimensionality Reduction), AA_Full, Geno_Full (full interaction model with additive or genotypic mode) and SNPassoc in detecting interactions. Applying SIPI to the prostate cancer PRACTICAL consortium data with approximately 21 000 patients, the four SNP pairs in EGFR-EGFR , EGFR-MMP16 and EGFR-CSF1 were found to be associated with prostate cancer aggressiveness with the exact or similar pattern in the discovery and validation sets. A similar match for external validation of SNP-SNP interaction studies is suggested. We demonstrated that SIPI not only searches for more meaningful interaction patterns but can also overcome the unstable nature of interaction patterns. Availability and Implementation: The SIPI software is freely available at http://publichealth.lsuhsc.edu/LinSoftware/ . Contact: hlin1@lsuhsc.edu. Supplementary information: Supplementary data are available at Bioinformatics online.

Original publication

DOI

10.1093/bioinformatics/btw762

Type

Journal article

Journal

Bioinformatics

Publication Date

15/03/2017

Volume

33

Pages

822 - 833

Keywords

Epistasis, Genetic, ErbB Receptors, Genetic Association Studies, Genetic Predisposition to Disease, Humans, Male, Matrix Metalloproteinase 16, Models, Genetic, Polymorphism, Single Nucleotide, Prostatic Neoplasms, Software, Statistics as Topic