Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Static cold storage (SCS) is the standard method for pancreas preservation prior to transplantation; however, it does not permit organ assessment. Normothermic reperfusion (NR) is utilized clinically for other organs to assess viability. Our aim was to develop NR using normothermic machine perfusion technique to simulate reperfusion at the time of transplantation, enabling evaluation of oxygenated hypothermic machine perfusion (HMPO2) as a newer strategy to optimize pancreas preservation. 13 porcine pancreases procured after circulatory death were divided into 3 groups: 4 pancreases preserved using SCS, and 2 groups preserved by HMPO2 (n = 4 and n = 5, differing by type of preservation solution). Duration of perfusion or cold storage was 6 hours before the 1-hour assessment using NR. Outcome measures were perfusion characteristics, biochemistry and change in tissue water mass as oedema assessment. During NR, the HMPO2 groups demonstrated better perfusion characteristics, normal macroscopic appearances, decreased water mass and one HMPO2 group demonstrated a response to glucose stimulation. Conversely, the SCS group showed an increased water mass and developed early macroscopic appearances of oedema, interstitial haemorrhage and minimal portal outflow. This study suggests that ex situ assessment of pancreases by NR is promising, and that HMPO2 may be better than SCS.

Original publication

DOI

10.1111/tri.13990

Type

Journal article

Journal

Transpl Int

Publication Date

09/2021

Volume

34

Pages

1630 - 1642

Keywords

normothermic reperfusion, organ assessment, oxygenated hypothermic machine perfusion, pancreas preservation, pancreas transplantation, porcine model, Animals, Organ Preservation, Pancreas, Pancrelipase, Perfusion, Reperfusion, Swine