Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

To date, two forms of microsatellite instability (MSI) have been described in human cancer. MSI typical of hereditary nonpolyposis colon cancer (HNPCC), is due to deficient DNA mismatch repair (MMR) and is defined with mono- and dinucleotide repeat microsatellites. A second variety of instability is best seen at selective tetranucleotide repeats (EMAST; elevated microsatellite alterations at select tetranucleotides). While MSI occurs infrequently in bladder cancers, EMAST is common. Sporadic tumours with the largest proportion showing MSI are those found most frequently in HNPCC kindreds. While bladder cancer is not frequently seen in HNPCC, upper urinary tract tumours (UTTs) are. Having previously found a low frequency of MSI in bladder cancer, we sought to determine the relative levels of MSI and EMAST in transitional cell carcinoma (TCC) of the upper and lower urinary tracts. Microsatellite analysis was performed at 10 mono- and dinucleotide and eight tetranucleotide loci, in 89 bladder and 71 UTT TCC. Contrasting patterns of instability were seen in urinary tumours. In bladder cancer, MSI was rare and EMAST was common. The presence of EMAST was not related to tumour grade, stage, subsequent outcome or immunohistochemical expression of the MMR proteins. In UTT, while MSI occurred frequently, EMAST was seen less frequently than in bladder cancer. When TCC of the upper and lower urinary tracts are compared, MSI-H is more frequent in UTT and EMAST more frequent in bladder cancer. Our findings show that, as for colorectal cancer, the pattern of MSI varies with location in the urinary tract. In addition, we have confirmed that MSI and EMAST are discrete forms of MSI, and that the presence of EMAST does not affect tumour phenotype.

Original publication

DOI

10.1038/sj.onc.1206964

Type

Journal

Oncogene

Publication Date

27/11/2003

Volume

22

Pages

8699 - 8706

Keywords

Adaptor Proteins, Signal Transducing, Carcinoma, Transitional Cell, Carrier Proteins, DNA-Binding Proteins, Humans, Immunohistochemistry, Microsatellite Repeats, MutL Protein Homolog 1, MutS Homolog 2 Protein, Neoplasm Proteins, Nuclear Proteins, Proto-Oncogene Proteins, Repetitive Sequences, Nucleic Acid, Urinary Bladder Neoplasms, Urologic Neoplasms