Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Deep brain stimulation is a minimally invasive targeted neurosurgical intervention that enables structures deep in the brain to be stimulated electrically by an implanted pacemaker. It has become the treatment of choice for Parkinson's disease, refractory to, or complicated by, drug therapy. Its efficacy has been demonstrated robustly by randomized, controlled clinical trials, with multiple novel brain targets having been discovered in the last 20 years. Multifarious clinical indications for deep brain stimulation now exist, including dystonia and tremor in movement disorders; depression, obsessive-compulsive disorder and Tourette's syndrome in psychiatry; epilepsy, cluster headache and chronic pain, including pain from stroke, amputation, trigeminal neuralgia and multiple sclerosis. Current research argues for novel indications, including hypertension and orthostatic hypotension. The development, principles, indications and effectiveness of the technique are reviewed here. While deep brain stimulation is a standard and widely accepted treatment for Parkinson's disease after 20 years of experience, in chronic pain it remains restricted to a handful of experienced, specialist centers willing to publish outcomes despite its use for over 50 years. Reasons are reviewed and novel approaches to appraising clinical evidence in functional neurosurgery are suggested.

Original publication

DOI

10.1586/17434440.4.5.591

Type

Journal article

Journal

Expert Rev Med Devices

Publication Date

09/2007

Volume

4

Pages

591 - 603

Keywords

Central Nervous System Diseases, Cost-Benefit Analysis, Deep Brain Stimulation, Humans, Treatment Outcome