Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Background: That pathogens and hosts coevolve is a powerful concept with broad theoretical and applied implications spanning from genetic theory to the medical and veterinary sciences, particularly in the context of infectious disease epidemiology. A substantial body of theory has been developed to explore the likelihood and consequences of coevolution, but few empirical studies have been conducted to test these theories, particularly for indirectly-transmitted pathogen-host systems. We initiated replicate longitudinal host-schistosome co-selection trials under different host genotype combinations: Schistosoma mansoni parasite lines were co-selected with populations of either previously resistant-selected Biomphalaria glabrata host genotypes, or unselected susceptible B. glabrata genotypes, or a mixed population of the two. All parasite lines were also passaged through their obligatory mammalian definitive host at each generation. Results: We demonstrated variation in, and a reciprocal impact on, the fitness of both host and pathogen phenotype and genotype, an outcome dependent on the combinations of genotypes involved, and evidence of change over time. Most apparent was the observation that parasites appeared to rapidly adapt to those intermediate hosts previously selected for resistance. Conclusion: Our results illustrate the potential for host-schistosome coevolution and, in particular, suggest that host resistance may be a temporary phenomenon in nature due, in part, to rapid counter-adaptations by parasites. © 2007 Webster et al; licensee BioMed Central Ltd.

Original publication

DOI

10.1186/1471-2148-7-91

Type

Journal article

Journal

BMC Evolutionary Biology

Publication Date

24/07/2007

Volume

7