Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Currently, two main technologies are used for screening of DNA copy number; the BAC (Bacterial Artificial Chromosome) and the recently developed oligonucleotide-based CGH (Chromosomal Comparative Genomic Hybridization) arrays which are capable of detecting small genomic regions with amplification or deletion. The correlation as well as the discriminative power of these platforms has never been compared statistically on a significant set of human patient samples. RESULTS: In this paper, we present an exhaustive comparison between the two CGH platforms, undertaken at two independent sites using the same batch of DNA from 19 advanced prostate cancers. The comparison was performed directly on the raw data and a significant correlation was found between the two platforms. The correlation was greatly improved when the data were averaged over large chromosomic regions using a segmentation algorithm. In addition, this analysis has enabled the development of a statistical model to discriminate BAC outliers that might indicate microevents. These microevents were validated by the oligo platform results. CONCLUSION: This article presents a genome-wide statistical validation of the oligo array platform on a large set of patient samples and demonstrates statistically its superiority over the BAC platform for the Identification of chromosomic events. Taking advantage of a large set of human samples treated by the two technologies, a statistical model has been developed to show that the BAC platform could also detect microevents.

Original publication

DOI

10.1186/1471-2164-8-84

Type

Journal

BMC Genomics

Publication Date

29/03/2007

Volume

8

Keywords

Chromosomes, Artificial, Bacterial, Gene Dosage, Humans, Male, Models, Statistical, Nucleic Acid Hybridization, Oligonucleotides, Prostatic Neoplasms