Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Epidemiological and clinical studies suggest comorbidity between prostate cancer (PCA) and cardiovascular disease (CVD) risk factors. However, the relationship between these two phenotypes is still not well understood. Here we sought to identify shared genetic loci between PCA and CVD risk factors. METHODS: We applied a genetic epidemiology method based on conjunction false discovery rate (FDR) that combines summary statistics from different genome-wide association studies (GWAS), and allows identification of genetic overlap between two phenotypes. We evaluated summary statistics from large, multi-centre GWA studies of PCA (n=50 000) and CVD risk factors (n=200 000) [triglycerides (TG), low-density lipoprotein (LDL) cholesterol and high-density lipoprotein (HDL) cholesterol, systolic blood pressure, body mass index, waist-hip ratio and type 2 diabetes (T2D)]. Enrichment of single nucleotide polymorphisms (SNPs) associated with PCA and CVD risk factors was assessed with conditional quantile-quantile plots and the Anderson-Darling test. Moreover, we pinpointed shared loci using conjunction FDR. RESULTS: We found the strongest enrichment of P-values in PCA was conditional on LDL and conditional on TG. In contrast, we found only weak enrichment conditional on HDL or conditional on the other traits investigated. Conjunction FDR identified altogether 17 loci; 10 loci were associated with PCA and LDL, 3 loci were associated with PCA and TG and additionally 4 loci were associated with PCA, LDL and TG jointly (conjunction FDR <0.01). For T2D, we detected one locus adjacent to HNF1B. CONCLUSIONS: We found polygenic overlap between PCA predisposition and blood lipids, in particular LDL and TG, and identified 17 pleiotropic gene loci between PCA and LDL, and PCA and TG, respectively. These findings provide novel pathobiological insights and may have implications for trials using targeting lipid-lowering agents in a prevention or cancer setting.

Original publication

DOI

10.1093/ije/dyu090

Type

Journal article

Journal

Int j epidemiol

Publication Date

08/2014

Volume

43

Pages

1205 - 1214

Keywords

Prostate cancer, blood lipids, cholesterol, genetic epidemiology, pleiotropy, type 2 diabetes, Blood Pressure, Body Mass Index, Cardiovascular Diseases, Cholesterol, HDL, Cholesterol, LDL, Comorbidity, Diabetes Mellitus, Type 2, Dyslipidemias, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Male, Molecular Epidemiology, Obesity, Polymorphism, Single Nucleotide, Prostatic Neoplasms, Risk Factors, Triglycerides, Waist-Hip Ratio