Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Successful pancreas preservation during storage in oxygenated perfluorodecalin (PFD) is mainly related to oxidative ATP generation during storage. Increasing the storage temperature would accelerate this process essential for resuscitation of ischemically damaged pancreatic tissue. The present study aimed at comparing islet isolation outcome from adult pig pancreata preserved in oxygenated PFD by means of a one-layer method during storage on ice or at 20 degrees C. Resected pancreata were intraductally flushed with cold UW solution and promptly processed (n = 6) or stored for 3 h in continuously oxygenated PFD at 4 degrees C (n = 5) or 20 degrees C (n = 7). Prior to digestion-filtration pancreata were intraductally injected with UW supplemented with Serva collagenase NB8 and neutral protease. Islet quality assessment determined viability, glucose stimulation index, mitochondrial activity, intracellular ATP content, and transplant function in diabetic nude mice. Pancreata oxygenated for 3 h at 20 degrees C yielded islet numbers similar to organs oxygenated at 4 degrees C. Compared to a storage temperature of 20 degrees C, preservation at 4 degrees C reduced islet ATP content (p < 0.05) as well as islet viability (p < 0.05). Nevertheless, PFD storage at 20 degrees C decreased insulin response to glucose compared to unstored pancreata (p < 0.05). In contrast to unstored pancreata or cold-stored organs, transplantation of islets isolated after oxygenation at 20 degrees C was characterized by an early loss of transplant function in 50% of recipients (p < 0.05). The present study demonstrates that PFD storage at 20 degrees C enhances islet ATP synthesis within a short period of oxygenation but deteriorates islet function. We conclude that the present data reflect an equilibration between reduced depression of metabolic activity resulting in damage of islets and temperature-stimulated acceleration of ATP synthesis. Future studies are required to adjust the optimum storage temperature for pancreas oxygenation in different species.

Original publication

DOI

10.3727/096368909X470838

Type

Journal article

Journal

Cell Transplant

Publication Date

2009

Volume

18

Pages

745 - 751

Keywords

Adenosine, Adenosine Triphosphate, Allopurinol, Animals, Cell Survival, Diabetes Mellitus, Female, Fluorocarbons, Glucose, Glutathione, Insulin, Islets of Langerhans, Islets of Langerhans Transplantation, Mice, Mice, Nude, Mitochondria, Organ Preservation, Organ Preservation Solutions, Oxygen, Raffinose, Swine, Temperature