Search results
Found 12319 matches for
Muscarinic receptors mediate motivation via preparatory neural activity in humans.
Motivation depends on dopamine, but might be modulated by acetylcholine which influences dopamine release in the striatum, and amplifies motivation in animal studies. A corresponding effect in humans would be important clinically, since anticholinergic drugs are frequently used in Parkinson's disease, a condition that can also disrupt motivation. Reward and dopamine make us more ready to respond, as indexed by reaction times (RT), and move faster, sometimes termed vigour. These effects may be controlled by preparatory processes that can be tracked using electroencephalography (EEG). We measured vigour in a placebo-controlled, double-blinded study of trihexyphenidyl (THP), a muscarinic antagonist, with an incentivised eye movement task and EEG. Participants responded faster and with greater vigour when incentives were high, but THP blunted these motivational effects, suggesting that muscarinic receptors facilitate invigoration by reward. Preparatory EEG build-up (contingent negative variation [CNV]) was strengthened by high incentives and by muscarinic blockade, although THP reduced the incentive effect. The amplitude of preparatory activity predicted both vigour and RT, although over distinct scalp regions; frontal activity predicted vigour, whereas a larger, earlier, central component predicted RT. The incentivisation of RT was partly mediated by the CNV, though vigour was not. Moreover, the CNV mediated the drug's effect on dampening incentives, suggesting that muscarinic receptors underlie the motivational influence on this preparatory activity. Taken together, these findings show that a muscarinic blocker impairs motivated action in healthy people, and that medial frontal preparatory neural activity mediates this for RT.
Neurosurgery
The nervous system is the principal means with which we negotiate the outside world. Injury to the nervous system (brain, spinal cord and nerves) therefore may result not simply in physical impairments, but psychological, social and economic impairments too. Legal proceedings therefore may focus upon the effect of medical errors on claimants’ psychological, economic or social capacities, not simply on physical harm. The role of neurosurgery in many disorders of the nervous system concerns prevention of secondary injury: despite the sophistication of modern medicine, damage to the nervous system caused by a primary event (for example, head injury, spontaneous bleed, acutely prolapsed disc) is often irreversible and may set a spiral of deterioration in motion that may be beyond the abilities of physicians to halt.The scope of this chapter is to describe current management strategies of nervous system disorders in which a neurosurgeon would be reasonably expected to play a lead role, although not necessarily an exclusive role. Neurosurgery is a ‘tertiary service’ in the NHS, meaning a patient may have been managed by another hospital-based specialist, or even pre-hospital specialist, prior to transfer to the care of a neurosurgeon. Neurosurgeons may therefore become involved in complaints arising from problems with delayed diagnosis or timely transfer to neurosurgical care, in addition to surgical and post-surgical care.
Spatial and Temporal Distribution of Information Processing in the Human Dorsal Anterior Cingulate Cortex.
The dorsal anterior cingulate cortex (dACC) is a key node in the human salience network. It has been ascribed motor, pain-processing and affective functions. However, the dynamics of information flow in this complex region and how it responds to inputs remain unclear and are difficult to study using non-invasive electrophysiology. The area is targeted by neurosurgery to treat neuropathic pain. During deep brain stimulation surgery, we recorded local field potentials from this region in humans during a decision-making task requiring motor output. We investigated the spatial and temporal distribution of information flow within the dACC. We demonstrate the existence of a distributed network within the anterior cingulate cortex where discrete nodes demonstrate directed communication following inputs. We show that this network anticipates and responds to the valence of feedback to actions. We further show that these network dynamics adapt following learning. Our results provide evidence for the integration of learning and the response to feedback in a key cognitive region.
Author Correction: Cellular census of human fibrosis defines functionally distinct stromal cell types and states.
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Cellular census of human fibrosis defines functionally distinct stromal cell types and states.
Fibrotic disorders are some of the most devastating and poorly treated conditions in developed nations, yet effective therapeutics are not identified for many of them. A major barrier for the identification of targets and successful clinical translation is a limited understanding of the human fibrotic microenvironment. Here, we construct a stromal cell atlas of human fibrosis at single cell resolution from patients with Dupuytren's disease, a localized fibrotic condition of the hand. A molecular taxonomy of the fibrotic milieu characterises functionally distinct stromal cell types and states, including a subset of immune regulatory ICAM1+ fibroblasts. In developing fibrosis, myofibroblasts exist along an activation continuum of phenotypically distinct populations. We also show that the tetraspanin CD82 regulates cell cycle progression and can be used as a cell surface marker of myofibroblasts. These findings have important implications for targeting core pathogenic drivers of human fibrosis.
Single cell force profiling of human myofibroblasts reveals a biophysical spectrum of cell states.
Mechanical force is a fundamental regulator of cell phenotype. Myofibroblasts are central mediators of fibrosis, a major unmet clinical need characterised by the deposition of excessive matrix proteins. Traction forces of myofibroblasts play a key role in remodelling the matrix and modulate the activities of embedded stromal cells. Here, we employ a combination of unsupervised computational analysis, cytoskeletal profiling and single cell traction force microscopy as a functional readout to uncover how the complex spatiotemporal dynamics and mechanics of living human myofibroblast shape sub-cellular profiling of traction forces in fibrosis. We resolve distinct biophysical communities of myofibroblasts, and our results provide a new paradigm for studying functional heterogeneity in human stromal cells.
Identification of TNFR2 and IL-33 as therapeutic targets in localized fibrosis.
Dissecting the molecular landscape of fibrotic disease, a major unmet need, will inform the development of novel treatment strategies to target disease progression and identify desperately needed therapeutic targets. Here, we provide a detailed single-cell analysis of the immune landscape in Dupuytren's disease, a localized fibrotic condition of the hand, and identify a pathogenic signaling circuit between stromal and immune cells. We demonstrate M2 macrophages and mast cells as key cellular sources of tumor necrosis factor (TNF) that promotes myofibroblast development. TNF acts via the inducible TNFR2 receptor and stimulates interleukin-33 (IL-33) secretion by myofibroblasts. In turn, stromal cell IL-33 acts as a potent stimulus for TNF production from immune cells. Targeting this reciprocal signaling pathway represents a novel therapeutic strategy to inhibit the low-grade inflammation in fibrosis and the mechanism that drives chronicity.
Anti-Tumour Necrosis Factor Therapy for Dupuytren's Disease: A Randomised Dose Response Proof of Concept Phase 2a Clinical Trial.
BACKGROUND: Dupuytren's disease is a common fibrotic condition of the hand that causes irreversible flexion contractures of the fingers, with no approved therapy for early stage disease. Our previous analysis of surgically-excised tissue defined tumour necrosis factor (TNF) as a potential therapeutic target. Here we assessed the efficacy of injecting nodules of Dupuytren's disease with a TNF inhibitor. METHODS: Patients were randomised to receive adalimumab on one occasion in dose cohorts of 15 mg in 0.3 ml, 35 mg in 0.7 ml, or 40 mg in 0.4 ml, or an equivalent volume of placebo in a 3:1 ratio. Two weeks later the injected tissue was surgically excised and analysed. The primary outcome measure was levels of mRNA expression for α-smooth muscle actin (ACTA2). Secondary outcomes included levels of α-SMA and collagen proteins. The trial was registered with ClinicalTrial.gov (NCT03180957) and the EudraCT (2015-001780-40). FINDINGS: We recruited 28 patients, 8 assigned to the 15 mg, 12 to the 35 mg and 8 to the 40 mg adalimumab cohorts. There was no change in mRNA levels for ACTA2, COL1A1, COL3A1 and CDH11. Levels of α-SMA protein expression in patients treated with 40 mg adalimumab (1.09 ± 0.09 ng per μg of total protein) were significantly lower (p = 0.006) compared to placebo treated patients (1.51 ± 0.09 ng/μg). The levels of procollagen type I protein expression were also significantly lower (p
Beta rhythms (15-20 Hz) generated by nonreciprocal communication in hippocampus.
Generation of gamma rhythms in reciprocally connected areas of cortex produces synchronous neuronal firing, although little is known about the consequences of gamma rhythms when generated in nonreciprocally connected regions. This nonreciprocity exists in hippocampus, where gamma rhythms are generated in area CA3 in vitro and in vivo and nonreciprocally projected to area CA1 by the Schaffer collateral pathway. Here we demonstrate how this CA3 gamma rhythm generates two different patterns of local CA1 oscillation dependent on the degree of output from area CA1. 1) In conditions where activity projected to area CA1 produces only very low principal cell recruitment the local population rhythm mimics the gamma rhythm projected from CA3. This activity is generated predominantly by recruitment of CA1 basket cells in a manner dependent on phasic, feedforward excitation of this interneuron subclass. Interneurons in stratum oriens, not receiving CA3 feedforward input, fired at theta frequencies. 2) In the presence of serotonin CA1 principal cell recruitment was appreciably enhanced, resulting in dual activation of CA1 basket cells through both feedforward and feedback excitations. Feedback excitation to CA1 stratum oriens interneurons was also enhanced. The resulting change in interneuron network dynamics generated a beta-frequency CA1 rhythm (as a near-subharmonic of the gamma rhythm projected from CA3). These findings demonstrate that in nonreciprocally connected networks, the frequency of population rhythms in target areas serves to code for degree of principal cell recruitment by afferent input.
A model of atropine-resistant theta oscillations in rat hippocampal area CA1.
Theta frequency oscillations are a predominant feature of rhythmic activity in the hippocampus. We demonstrate that hippocampal area CA1 generates atropine-resistant theta population oscillations in response to metabotropic glutamate receptor activation under conditions of reduced AMPA receptor activation. This activity occurred in the absence of inputs from area CA3 and extra-ammonic areas. Field theta oscillations were co-expressed with pyramidal distal apical dendritic burst spiking and were temporally related to trains of IPSPs with slow kinetics. Pyramidal somatic responses showed theta oscillations consisted of compound inhibitory synaptic potentials with initial IPSPs with slow kinetics followed by trains of smaller, faster IPSPs. Pharmacological modulation of IPSPs altered the theta oscillation suggesting an inhibitory network origin. Somatic IPSPs, dendritic burst firing and stratum pyramidale interneuron activity were all temporally correlated with spiking in stratum oriens interneurons demonstrating intrinsic theta-frequency oscillations. Disruption of spiking in these interneurons was accompanied by a loss of both field theta and theta frequency IPSP trains. We suggest that population theta oscillations can be generated as a consequence of intrinsic theta frequency spiking activity in a subset of stratum oriens interneurons controlling electrogenesis in pyramidal cell apical dendrites.
A pitfall in the interpretation of plain abdnominal radiographs in neonatal intestinal perforation: a case report.
INTRODUCTION: The recognition of neonatal intestinal perforation relies on identification of free gas in the peritoneum on plain abdominal radiographs and the associated clinical signs. The neonatal bowel takes several hours to fill with gas, potentially obscuring one of the radiological signs of bowel perforation in the neonate. CASE PRESENTATION: We describe the case of a male, Caucasian neonate, born prematurely at 35+2 weeks of gestation, who was suspected before birth to be at risk of intestinal perforation, based on antenatal ultrasound signs of bowel obstruction. However, the diagnosis of intestinal perforation after birth was initially delayed because the first abdominal radiograph, requested by the neonatal team, was taken too early in the clinical progression of the neonate's condition. As a consequence, this delayed referral to the paediatric surgical team and definitive management. CONCLUSION: This case illustrates how consideration of the timing of abdominal radiographs in suspected intestinal perforation in the neonate may avoid misinterpretation of radiographic signs, thereby avoiding delays in referral and treatment in the crucial first few hours of life.
Acute vasospasm following transcallosal resection of a xanthogranulomatous colloid cyst of the 3rd ventricle.
We present the first case of a 57 year old man who developed severe, acute vasospasm following transcallosal resection of an unusual, xanthogranulomatous colloid cyst. The 16 year history of growth of this cyst may have resulted in its unusual pathology, and the subsequent vasospastic reaction to its excision. We discuss the potential pathological relationship between the inflammatory nature of the cyst, chemical meningitis and vasospasm, and what this implies about vasospasm in general. The severe, life-threatening vasospasm affected all four major vessels and required aggressive management by endovascular injection of nimodipine and angioplasty, with good recovery. The case illustrates a previously undescribed sequel of surgery for this condition, demonstrates an effective treatment and offers possible insights into the pathogenesis of vasospasm.
An unusual cause of a superior mediastinal mass in an infant.
Tuberculosis has not been reported to be a cause of mediastinal masses in previous case series of mediastinal masses in children. We report the case of a 7-month-old infant with a superior mediastinal mass extending into the right chest, who was referred to the paediatric surgical team for biopsy and further management. Clinical and radiological findings were suggestive of a malignancy. However, thoracoscopic biopsy revealed the presence of a tuberculous mass.
Clinical Negligence 5th edition - Neurosurgery chapter
Background 5.3 There has been widespread long-standing concern about clinical negligence litigation: delay; disproportionate cost; poor success rate; excessive legal fees; complexity; and limited access to justice. In May 2001 the National ...
High-intensity focused ultrasonic ablation of sacral chordoma is feasible: a series of four cases and details of a national clinical trial.
High-intensity focused ultrasound describes the use of high-intensity focused ultrasound (HIFU) to ablate tumours without requiring an incision or other invasive procedure. This technique has been trialled on a range of tumours including uterine fibroids, prostate, liver and renal cancer. We describe our experience of using HIFU to ablate sacral chordoma in four patients with advanced tumours. Patients were treated under general anaesthetic or sedation using an ultrasound-guided HIFU device. HIFU therapy was associated with a reduction in tumour volume over time in three patients for whom follow up scans were available. Tumour necrosis was reliably demonstrated in two of the three patients. We have established a national trial to assess if HIFU may improve long-term outcome from sacral chordoma, details are given.
The Cognitive Role of the Globus Pallidus interna; Insights from Disease States.
The motor symptoms of both Parkinson's disease and focal dystonia arise from dysfunction of the basal ganglia, and are improved by pallidotomy or deep brain stimulation of the Globus Pallidus interna (GPi). However, Parkinson's disease is associated with a greater degree of basal ganglia-dependent learning impairment than dystonia. We attempt to understand this observation in terms of a comparison of the electrophysiology of the output of the basal ganglia between the two conditions. We use the natural experiment offered by Deep Brain Stimulation to compare GPi local field potential responses in subjects with Parkinson's disease compared to subjects with dystonia performing a forced-choice decision-making task with sensory feedback. In dystonic subjects, we found that auditory feedback was associated with the presence of high gamma oscillations nestled on a negative deflection, morphologically similar to sharp wave ripple complexes described in human rhinal cortex. These were not present in Parkinson's disease subjects. The temporal properties of the high gamma burst were modified by incorrect trial performance compared to correct trial performance. Both groups exhibited a robust low frequency response to 'incorrect' trial performance in dominant GPi but not non-dominant GPi at theta frequency. Our results suggest that cellular processes associated with striatum-dependent memory function may be selectively impaired in Parkinson's disease even if dopaminergic drugs are administered, but that error detection mechanisms are preserved.
Consent: an event or a memory in lumbar spinal surgery? A multi-centre, multi-specialty prospective study of documentation and patient recall of consent content.
STUDY DESIGN: Prospective, multi-centre, multi-specialty medical notes review and patient interview. PURPOSE: The consenting process is an important communication tool which also carries medico-legal implications. While written consent is a pre-requisite before spinal surgery in the UK, the standard and effectiveness of the process have not been assessed previously. This study assesses standard of written consent for elective lumbar decompressive surgery for degenerative disc disease across different regions and specialties in the UK; level of patient recall of the consent content; and identifies factors which affect patient recall. METHODS: Consent forms of 153 in-patients from 4 centres a, b, c, d were reviewed. Written documentation of intended benefits, alternative treatments and operative risks was assessed. Of them, 108 patients were interviewed within 24 h before or after surgeries to assess recall. RESULTS: The written documentation rates of the operative risks showed significant inter-centre variations in haemorrhage and sphincter disturbance (P = 0.000), but not for others. Analysis of pooled data showed variations in written documentation of risks (P 14 days compared to <2 days before their surgeries had higher recall for paralysis (65.2 vs 43.7%) and recurrence (17.4 vs 2.8%). Patient recall was independent of consenter grade. CONCLUSION: Overall, the standard of written consent for elective lumbar spinal decompressive surgery was sub-optimal, which was partly reflected in the poor patient recall. While consenter seniority did not affect patient recall, younger age and longer consent-to-surgery time improved it.
Thalamic Deep Brain Stimulation for Neuropathic Pain: Efficacy at Three Years' Follow-Up.
OBJECT: Chronic neuropathic pain is estimated to affect 3-4.5% of the worldwide population, posing a serious burden to society. Deep Brain Stimulation (DBS) is already established for movement disorders and also used to treat some "off-label" conditions. However, DBS for the treatment of chronic, drug refractory, neuropathic pain, has shown variable outcomes with few studies performed in the last decade. Thus, this procedure has consensus approval in parts of Europe but not the USA. This study prospectively evaluated the efficacy at three years of DBS for neuropathic pain. METHODS: Sixteen consecutive patients received 36 months post-surgical follow-up in a single-center. Six had phantom limb pain after amputation and ten deafferentation pain after brachial plexus injury, all due to traumas. To evaluate the efficacy of DBS, patient-reported outcome measures were collated before and after surgery, using a visual analog scale (VAS) score, University of Washington Neuropathic Pain Score (UWNPS), Brief Pain Inventory (BPI), and 36-Item Short-Form Health Survey (SF-36). RESULTS: Contralateral, ventroposterolateral sensory thalamic DBS was performed in sixteen patients with chronic neuropathic pain over 29 months. A postoperative trial of externalized DBS failed in one patient with brachial plexus injury. Fifteen patients proceeded to implantation but one patient with phantom limb pain after amputation was lost for follow-up after 12 months. No surgical complications or stimulation side effects were noted. After 36 months, mean pain relief was sustained, and the median (and interquartile range) of the improvement of VAS score was 52.8% (45.4%) (p = 0.00021), UWNPS was 30.7% (49.2%) (p = 0.0590), BPI was 55.0% (32.0%) (p = 0.00737), and SF-36 was 16.3% (30.3%) (p = 0.4754). CONCLUSIONS: DBS demonstrated efficacy at three years for chronic neuropathic pain after traumatic amputation and brachial plexus injury, with benefits sustained across all pain outcomes measures and slightly greater improvement in phantom limb pain.
Region-specific reduction in entorhinal gamma oscillations and parvalbumin-immunoreactive neurons in animal models of psychiatric illness.
Psychiatric illnesses, particularly schizophrenia, are associated with disrupted markers for interneuronal function and interneuron-mediated brain rhythms such as gamma frequency oscillations. Here we investigate a possible link between these two observations in the entorhinal cortex and hippocampus by using a genetic and an acute model of psychiatric illness. Lysophosphatidic acid 1 receptor-deficient (LPA1-deficient) mice show psychomotor-gating deficits and neurochemical changes resembling those seen in postmortem schizophrenia studies. Similar deficits are seen acutely with antagonism of the NMDA subtype of glutamate receptor. Neither model induced any change in power or frequency of gamma rhythms generated by kainate in hippocampal slices. In contrast, a dramatic decrease in the power of gamma oscillations was seen in superficial, but not deep, medial entorhinal cortex layers in both models. Immunolabeling for GABA, parvalbumin, and calretinin in medial entorhinal cortex from LPA1-deficient mice showed an approximately 40% reduction in total GABA- and parvalbumin-containing neurons, but no change in the number of calretinin-positive neurons. This deficit was specific for layer II (LII). No change in the number of neurons positive for these markers was seen in the hippocampus. Acute NMDA receptor blockade, which selectively reduces synaptic drive to LII entorhinal interneurons, also disrupted gamma rhythms in a similar manner in superficial entorhinal cortex, but not in hippocampus. These data demonstrate an area-specific deficit in gamma rhythmogenesis in animal models of psychiatric illness and suggest that loss, or reduction in function, of interneurons having a large NMDA receptor expression may underlie the network dysfunction that is seen.