Search results
Found 11675 matches for
For the Neuromodulation Team at Oxford University Hospitals, 2016 has had an electrifying start. The team have been performing dorsal root ganglion (DRG) stimulation since 2013 and were one of the first UK centres to perform the procedure.
The current understanding of the phenotypic and functional properties of human regulatory B cells (Bregs).
B cells can have a wide range of pro- and anti- inflammatory functions. A subset of B cells called regulatory B cells (Bregs) can potently suppress immune responses. Bregs have been shown to maintain immune homeostasis and modulate inflammatory responses. Bregs are an exciting cellular target across a range of diseases, including Breg induction in autoimmunity, allergy and transplantation, and Breg suppression in cancers and infection. Bregs exhibit a remarkable phenotypic heterogeneity, rendering their unequivocal identification a challenging task. The lack of a universally accepted and exclusive surface marker set for Bregs across various studies contributes to inconsistencies in their categorization. This review paper presents a comprehensive overview of the current understanding of the phenotypic and functional properties of human Bregs while addressing the persisting ambiguities and discrepancies in their characterization. Finally, the paper examines the promising therapeutic opportunities presented by Bregs as their immunomodulatory capacities have gained attention in the context of autoimmune diseases, allergic conditions, and cancer. We explore the exciting potential in harnessing Bregs as potential therapeutic agents and the avenues that remain open for the development of Breg-based treatment strategies.
The cingulum: a central hotspot for the battle against chronic intractable pain?
Abstract Chronic pain causes a major burden on patient’s lives, in part due to its profound socioeconomic impact. Despite the development of various pharmacological approaches and (minor) invasive treatments, a subset of patients remain refractory, hence why alternative targeted neurosurgical interventions like cingulotomy and deep brain stimulation of the cingulum (DBS-ACC) should be considered in the last resort. Despite clinical evidence supporting the potential of these treatments in the management of chronic intractable pain, physicians remain reluctant on its clinical implementation. This can be partially attributed to the lack of clear overviews summarizing existent data. Hence, this article aims to evaluate the current status of cingulotomy and DBS-ACC in the treatment of chronic intractable pain, to provide insight in whether these neurosurgical approaches and its target should be reconsidered in the current era. In the current study, a literature searches was performed using the PubMed database. Additional articles were searched manually through reviews or references cited within the articles. After exclusion, 24 and 5 articles remained included in the analysis of cingulotomy and DBS-ACC respectively. Results indicate that various surgical techniques have been described for cingulotomy and DBS-ACC. Cingulotomy is shown to be effective 51%-53% and 43-64% of patients with neoplastic and non-neoplastic pain at ≤6 months follow-up, and 82% (9/11) and 76% (90/118) at ≥ 12months follow-up respectively. With regard to DBS-ACC, no data on neoplastic pain was reported, however, 59% (10/17) and 57% (8/14) of patients with non-neoplastic pain were considered responders at ≤ 6 months and ≥ 12months follow-up respectively. The most reported adverse events include change in affect (>6.9%, >29/420) and confusion (>4.8%, >20/420) for cingulotomy, and infection (12.8%, 6/47), seizures (8.5%, 4/47) and decline in semantic fluency (6.4%, 3/47) for DBS-ACC. It can be concluded that cingulotomy and DBS-ACC are effective last resort strategies for patients with refractory non-neoplastic and neoplastic pain, especially in case of an affective emotional component. Future research should be performed on the cingulum as a neurosurgical target as it allows for further exploration of promising treatment options for chronic intractable pain.
Study Dataset for mHLA-DRd and Cancer Risk
Export of datafile SPSS v27.0 used to generate results for mHLA-DRd paper
Serum HCoV-spike specific antibodies do not protect against subsequent SARS-CoV-2 infection in children and adolescents.
SARS-CoV-2 infections in children are generally asymptomatic or mild and rarely progress to severe disease and hospitalization. Why this is so remains unclear. Here we explore the potential for protection due to pre-existing cross-reactive seasonal coronavirus antibodies and compare the rate of antibody decline for nucleocapsid and spike protein in serum and oral fluid against SARS-CoV-2 within the pediatric population. No differences in seasonal coronaviruses antibody concentrations were found at baseline between cases and controls, suggesting no protective effect from pre-existing immunity against seasonal coronaviruses. Antibodies against seasonal betacoronaviruses were boosted in response to SARS-CoV-2 infection. In serum, anti-nucleocapsid antibodies fell below the threshold of positivity more quickly than anti-spike protein antibodies. These findings add to our understanding of protection against infection with SARS-CoV-2 within the pediatric population, which is important when considering pediatric SARS-CoV-2 immunization policies.
Ex vivo-expanded human CD19+TIM-1+ regulatory B cells suppress immune responses in vivo and are dependent upon the TIM-1/STAT3 axis.
Regulatory B cells (Breg) are a heterogenous population with immune-modulating functions. The rarity of human IL-10+ Breg makes translational studies difficult. Here we report ex vivo expansion of human B cells with in vivo regulatory function (expBreg). CD154-stimulation of human CD19+ B cells drives >900-fold expansion of IL-10+ B cells that is maintained in culture for 14 days. Whilst expBreg-mediated suppressive function is partially dependent on IL-10 expression, CRISPR-mediated gene deletions demonstrate predominant roles for TIM-1 and CD154. TIM-1 regulates STAT3 signalling and modulates downstream suppressive function. In a clinically relevant humanised mouse model of skin transplantation, expBreg prolongs human allograft survival. Meanwhile, CD19+CD73-CD25+CD71+TIM-1+CD154+ Breg cells are enriched in the peripheral blood of human donors with cutaneous squamous cell carcinoma (SCC). TIM-1+ and pSTAT3+ B cells are also identified in B cell clusters within histological sections of human cutaneous SCC tumours. Our findings thus provide insights on Breg homoeostasis and present possible targets for Breg-related therapies.
CD70 expression determines the therapeutic efficacy of expanded human regulatory T cells.
Regulatory T cells (Tregs) are critical mediators of immune homeostasis. The co-stimulatory molecule CD27 is a marker of highly suppressive Tregs, although the role of the CD27-CD70 receptor-ligand interaction in Tregs is not clear. Here we show that after prolonged in vitro stimulation, a significant proportion of human Tregs gain stable CD70 expression while losing CD27. The expression of CD70 in expanded Tregs is associated with a profound loss of regulatory function and an unusual ability to provide CD70-directed co-stimulation to TCR-activated conventional T cells. Genetic deletion of CD70 or its blockade prevents Tregs from delivering this co-stimulatory signal, thus maintaining their regulatory activity. High resolution targeted single-cell RNA sequencing of human peripheral blood confirms the presence of CD27-CD70+ Treg cells. These findings have important implications for Treg-based clinical studies where cells are expanded over extended periods in order to achieve sufficient treatment doses.
Targeting PI3K-gamma in myeloid driven tumour immune suppression: a systematic review and meta-analysis of the preclinical literature.
The intricate interplay between immune and stromal cells within the tumour microenvironment (TME) significantly influences tumour progression. Myeloid cells, including tumour-associated macrophages (TAMs), neutrophils (TANs), and myeloid-derived suppressor cells (MDSCs), contribute to immune suppression in the TME (Nakamura and Smyth in Cell Mol Immunol 17(1):1-12 (2020). https://doi.org/10.1038/s41423-019-0306-1 ; DeNardo and Ruffell in Nat Rev Immunol 19(6):369-382 (2019). https://doi.org/10.1038/s41577-019-0127-6 ). This poses a significant challenge for novel immunotherapeutics that rely on host immunity to exert their effect. This systematic review explores the preclinical evidence surrounding the inhibition of phosphoinositide 3-kinase gamma (PI3Kγ) as a strategy to reverse myeloid-driven immune suppression in solid tumours. EMBASE, MEDLINE, and PubMed databases were searched on 6 October 2022 using keyword and subject heading terms to capture relevant studies. The studies, focusing on PI3Kγ inhibition in animal models, were subjected to predefined inclusion and exclusion criteria. Extracted data included tumour growth kinetics, survival endpoints, and immunological responses which were meta-analysed. PRISMA and MOOSE guidelines were followed. A total of 36 studies covering 73 animal models were included in the review and meta-analysis. Tumour models covered breast, colorectal, lung, skin, pancreas, brain, liver, prostate, head and neck, soft tissue, gastric, and oral cancer. The predominant PI3Kγ inhibitors were IPI-549 and TG100-115, demonstrating favourable specificity for the gamma isoform. Combination therapies, often involving chemotherapy, radiotherapy, immune checkpoint inhibitors, biological agents, or vaccines, were explored in 81% of studies. Analysis of tumour growth kinetics revealed a statistically significant though heterogeneous response to PI3Kγ monotherapy, whereas the tumour growth in combination treated groups were more consistently reduced. Survival analysis showed a pronounced increase in median overall survival with combination therapy. This systematic review provides a comprehensive analysis of preclinical studies investigating PI3Kγ inhibition in myeloid-driven tumour immune suppression. The identified studies underscore the potential of PI3Kγ inhibition in reshaping the TME by modulating myeloid cell functions. The combination of PI3Kγ inhibition with other therapeutic modalities demonstrated enhanced antitumour effects, suggesting a synergistic approach to overcome immune suppression. These findings support the potential of PI3Kγ-targeted therapies, particularly in combination regimens, as a promising avenue for future clinical exploration in diverse solid tumour types.
A GMP Protocol for the Manufacture of Tregs for Clinical Application.
Infusion of regulatory T cells is a promising therapeutic strategy in organ transplantation to modulate the immune system, prevent rejection, minimize the need for pharmaceutical immunosuppression, and improve long-term transplant outcomes. Here we describe a GMP-compliant method we have used for the manufacture of ex vivo expanded autologous regulatory T cells for use in clinical trials.
Surveillance for low-risk kidney cancer: a narrative review of contemporary worldwide practices.
The management trend of low-risk kidney cancer over the last decade has been from treatment with radical nephrectomy, to use of nephron sparing procedures of partial nephrectomy and ablation, as well as the option of active surveillance (AS). This narrative review aims to summarise the available guidelines related to AS and review the published descriptions of regional practices on the management of low-risk kidney cancer worldwide. A search of PubMed, Google Scholar and Cochrane Library databases for studies published 2010 to June 2020 identified 15 studies, performed between 2000 and 2019, which investigated 13 different cohorts of low-risk kidney cancer patients on AS. Although international guidelines show a level of agreement in their recommendation on how AS is conducted, in terms of patient selection, surveillance strategy and triggers for intervention, cohort studies show distinct differences in worldwide practice of AS. Prospective studies showed general agreement in their predefined selection criteria for entry into AS. Retrospective studies showed that patients who were older, with greater comorbidities, worse performance status and smaller tumours were more likely to be managed with AS. The rate of percutaneous renal mass biopsy varied between studies from 2% to 56%. The surveillance protocol was different across all studies in terms of recommended modality and frequency of imaging. Of the 6 studies which had set indications for intervention, these were broadly in agreement. Despite clear criteria for intervention, patient or surgeon preference was still the reason in 11-71% of cases of delayed intervention across 5 studies. This review shows that AS is being applied in a variety of centres worldwide and that key areas of patient selection criteria and surveillance strategy have large similarities. However, the rate of renal mass biopsy and of delayed intervention varies significantly between studies, suggesting the process of diagnosing malignant SRM and decision making whilst on AS are varying in practice. Further research is needed on the diagnosis and characterisation of incidentally found small renal masses (SRM), using imaging and histology, and the natural history of these SRM in order to develop evidence-based active surveillance protocols.
A longitudinal single-cell atlas of anti-tumour necrosis factor treatment in inflammatory bowel disease.
Precision medicine in immune-mediated inflammatory diseases (IMIDs) requires a cellular understanding of treatment response. We describe a therapeutic atlas for Crohn's disease (CD) and ulcerative colitis (UC) following adalimumab, an anti-tumour necrosis factor (anti-TNF) treatment. We generated ~1 million single-cell transcriptomes, organised into 109 cell states, from 216 gut biopsies (41 subjects), revealing disease-specific differences. A systems biology-spatial analysis identified granuloma signatures in CD and interferon (IFN)-response signatures localising to T cell aggregates and epithelial damage in CD and UC. Pretreatment differences in epithelial and myeloid compartments were associated with remission outcomes in both diseases. Longitudinal comparisons demonstrated disease progression in nonremission: myeloid and T cell perturbations in CD and increased multi-cellular IFN signalling in UC. IFN signalling was also observed in rheumatoid arthritis (RA) synovium with a lymphoid pathotype. Our therapeutic atlas represents the largest cellular census of perturbation with the most common biologic treatment, anti-TNF, across multiple inflammatory diseases.
Editor's Choice - Effect of Carotid Endarterectomy on 20 Year Incidence of Recorded Dementia: A Randomised Trial.
OBJECTIVE: Stroke and carotid atherosclerosis are associated with dementia. Carotid endarterectomy (CEA) reduces stroke risk, although its effect on later dementia is uncertain. Participants in the Asymptomatic Carotid Surgery Trial (ACST-1), randomly allocated to immediate vs. deferral of CEA (i.e., no intervention unless or until triggered by ipsilateral transient ischaemic attack or stroke), were followed, to study effects on dementia. METHODS: From 1993 to 2003, ACST-1 included 3 120 participants with asymptomatic tight carotid stenosis. All UK and Swedish patients (n = 1 601; 796 immediate vs. 805 deferral) were followed with trial records, national electronic health record linkage, and (UK only) by post and telephone. Cumulative incidence and competing risk analyses were used to measure the effects of risk factors and CEA on dementia risk. Intention to treat analyses yielded hazard ratios (HRs; immediate vs. deferral) of dementia. RESULTS: The median follow up was 19.4 years (interquartile range 16.9 - 21.7). Dementia was recorded in 107 immediate CEA patients and 115 allocated delayed surgery; 1 290 patients died (1 091 [538 vs. 536] before any dementia diagnosis). Dementia incidence rose with age and with female sex (men: 8.3% aged < 70 years at trial entry vs. 15.1% aged ≥ 70; women: 15.1% aged < 70 years at trial entry vs. 22.4% aged ≥ 70 years) and was higher in those with pre-existing cerebral infarction (silent or with prior symptoms; 20.2% vs. 13.6%). Dementia risk was similar in both randomised groups: 6.7% vs. 6.6% at 10 years and 14.3% vs. 15.5% at 20 years, respectively. The dementia HR was 0.98 (95% confidence interval [CI] 0.75 - 1.28; p = .89), with no heterogeneity in the neutral effect of immediate CEA on dementia related to age, carotid stenosis, blood pressure, diabetes, country of residence, or medical treatments at trial entry (heterogeneity values p > .05). CONCLUSION: CEA was not associated with significant reductions in the long term hazards of dementia, but the CI did not exclude a proportional benefit or hazard of about 25%.
Protocol for the SELECT study: a sequential mixed methods study of the selection of UK medical students into clinical academic training.
BACKGROUND: Internationally, there has been a move towards fostering diverse healthcare workforces that are representative of the patient populations they serve. Selection criteria for academic-clinicians often aim to capture skills and attributes that demonstrate both clinical and academic excellence. Currently, it is not known whether the selection criteria for early academic-clinical careers advantage or disadvantage certain ethnic or socioeconomic groups. The UK has a structured route of integrated clinical academic training with entry level training for newly qualified doctors administered through the 'Specialised Foundation Programme' which provides protected time for research within the first two years of postgraduate clinical training. In this study, we aim to identify what selection criteria are used within the UK Specialised Foundation Programme, and how these relate to demographic factors. METHODS: We will perform a mixed methods study consisting of a document analysis of person specifications and selection criteria used in the 2024 UK Specialised Foundation Programme, and a national cross-sectional survey of current medical students in the UK. We will obtain the person specifications, selection criteria, white space (open ended questions used during shortlisting) and interview questions and mark schemes from each Specialised Unit of Applications via information available on their websites or through Freedom of Information requests. Our survey will collect information relating to demographic data, selection criteria, and perceptions of specialised foundation programme selection. DISCUSSION: International literature has demonstrated inequity in academic markers used in selection of post-graduate clinicians and that disadvantages caused by selection can compound over time. As such it is important to understand what inequity exists within the selection of early academic-clinicians, as this can help inform more equitable selection practices and help nurture a more diverse academic-clinical workforce.
Glycated haemoglobin is a major predictor of disease severity in patients with NAFLD.
OBJECTIVES: Currently, non-invasive scoring systems to stage the severity of non-alcoholic fatty liver disease (NAFLD) do not consider markers of glucose control (glycated haemoglobin, HbA1c); this study aimed to define the relationship between HbA1c and NAFLD severity in patients with and without type 2 diabetes. RESEARCH DESIGN AND METHODS: Data were obtained from 857 patients with liver biopsy staged NAFLD. Generalized-linear models and binomial regression analysis were used to define the relationships between histological NAFLD severity, age, HbA1c, and BMI. Paired biopsies from interventional studies (n = 421) were used to assess the impact of change in weight, HbA1c and active vs. placebo treatment on improvements in steatosis, non-alcoholic steatohepatitis (NASH), and fibrosis. RESULTS: In the discovery cohort (n = 687), risk of severe steatosis, NASH and advanced fibrosis correlated positively with HbA1c, after adjustment for obesity and age. These data were endorsed in a separate validation cohort (n = 170). Predictive modelling using HbA1c and age was non-inferior to the established non-invasive biomarker, Fib-4, and allowed the generation of HbA1c, age, and BMI adjusted risk charts to predict NAFLD severity. Following intervention, reduction in HbA1c was associated with improvements in steatosis and NASH after adjustment for weight change and treatment, whilst fibrosis change was only associated with weight change and treatment. CONCLUSIONS: HbA1c is highly informative in predicting NAFLD severity and contributes more than BMI. Assessments of HbA1c must be a fundamental part of the holistic assessment of patients with NAFLD and, alongside age, can be used to identify patients with highest risk of advanced disease.
Neurocardiology: translational advancements and potential.
In our original white paper published in the The Journal of Physiology in 2016, we set out our knowledge of the structural and functional organization of cardiac autonomic control, how it remodels during disease, and approaches to exploit such knowledge for autonomic regulation therapy. The aim of this update is to build on this original blueprint, highlighting the significant progress which has been made in the field since and major challenges and opportunities that exist with regard to translation. Imbalances in autonomic responses, while beneficial in the short term, ultimately contribute to the evolution of cardiac pathology. As our understanding emerges of where and how to target in terms of actuators (including the heart and intracardiac nervous system (ICNS), stellate ganglia, dorsal root ganglia (DRG), vagus nerve, brainstem, and even higher centres), there is also a need to develop sensor technology to respond to appropriate biomarkers (electrophysiological, mechanical, and molecular) such that closed-loop autonomic regulation therapies can evolve. The goal is to work with endogenous control systems, rather than in opposition to them, to improve outcomes.
Cutaneous adaptive immunity and uraemia: a narrative review
Chronic kidney disease affects 1 in 10 people globally, with a prevalence twenty times that of cancer. A subset of individuals will progress to end-stage renal disease (ESRD) where renal replacement therapy is required to maintain health. Cutaneous disease, including xerosis and pruritus, are endemic amongst patients with ESRD. In the uraemia-associated immune deficiency of ESRD, impaired circulating immune responses contribute to increased infection risk and poorer vaccination response. Clinical manifestations of dysregulated adaptive immunity within the skin have been well-described and have been posited to play a role in cutaneous features of ESRD. However, our understanding of the mechanisms by which adaptive immunity within the skin is affected by uraemia is relatively limited. We provide an overview of how the cutaneous adaptive immune system is impacted both directly and indirectly by uraemia, highlighting that much work has been extrapolated from the circulating immune system and often has not been directly evaluated in the skin compartment. We identify knowledge gaps which may be addressed by future research. Ultimately, greater understanding of these pathways may facilitate novel therapeutic approaches to ameliorate widespread cutaneous symptomatology in ESRD.
Multifocal, multiphenotypic tumours arising from an MTOR mutation acquired in early embryogenesis
Embryogenesis is a vulnerable time. Mutations in developmental cells can result in the wide dissemination of cells predisposed to disease within mature organs. We characterised the evolutionary history of four synchronous renal tumours from a 14-year-old girl using whole genome sequencing alongside single cell and bulk transcriptomic sequencing. Phylogenetic reconstruction timed the origin of all tumours to a multipotent embryonic cell committed to the right kidney, around 4 weeks post-conception. Biochemical and structural analysis of their shared MTOR mutation, absent from normal tissues, demonstrates enhanced protein flexibility, enabling a FAT domain hinge to dramatically increase activity of mTORC1 and mTORC2. Developmental mutations, not usually detected in traditional genetic screening, have vital clinical importance in guiding prognosis, targeted treatment, and family screening decisions for paediatric tumours.