Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Liver transplantation is increasingly dependent on the use of extended criteria donors (ECD) to increase the organ donor pool and address rising demand. This has necessitated the adoption of innovative technologies and strategies to protect these higher-risk grafts from the deleterious effects of traditional preservation and ischaemia reperfusion injury (IRI). The advent of normothermic machine perfusion (NMP) and rapid growth in the clinical adoption of this technology has accelerated efforts to utilise NMP as a platform for therapeutic intervention to optimise donor livers. In this review we will explore the emerging preclinical data related to ameliorating the effects of IRI, protecting the microcirculation and reducing the immunogenicity of donor organs during NMP. Exploiting the window of opportunity afforded by NMP, whereby the liver can be continuously supported and functionally assessed while therapies are directly delivered during the preservation period, has clear logistical and theoretical advantages over current preservation methods. The clinical translation of many of the therapeutic agents and strategies we will describe is becoming more feasible with widespread adaptation of NMP devices and rapid advances in molecular biology and gene therapy, which have substantially improved the performance of these agents. The delivery of novel therapeutics during NMP represents one of the new frontiers in transplantation research and offers real potential for successfully tackling fundamental challenges in transplantation such as IRI.

Original publication

DOI

10.3390/jcm9041046

Type

Journal article

Journal

J Clin Med

Publication Date

07/04/2020

Volume

9

Keywords

de-fatting, immunomodulation, ischaemia reperfusion injury, liver transplantation, microcirculation, normothermic machine perfusion, organ reconditioning, steatosis, therapeutics