Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Researchers at Oxford University have implanted a novel closed-loop research platform for investigating the role of the pedunculopontine nucleus (PPN) – a brainstem nucleus – in Parkinson’s-like Multiple Systems Atrophy (MSA).

First-in-human implant of a “closed-loop” bioelectronic research system for investigating treatments for brain disorders
First-in-human implant of a “closed-loop” bioelectronic research system for investigating treatments for brain disorders

The study is a collaboration between Neurosurgery (Associate Professor Alex Green at the Nuffield Department of Surgical Sciences), Engineering Science (Professor Tim Denison) and a UK-based bioelectronics technology company, Bioinduction Ltd.

The MINDS feasibility trial involves a five-subject first-in-man clinical trial with the novel closed-loop brain pacemaker to target the pedunculopontine nucleus (PPN) stimulation in patients with MSA. The protocol uses an investigational research platform, called the ‘Picostim™-DyNeuMo,’ which was developed in a strategic collaboration between Professor Denison and Bioinduction, Ltd.

The Picostim™-DyNeuMo project embeds scientific instrumentation into the predicate small, cranialized Picostim™ brain pacemaker for exploring the role of circadian rhythms, motion, and brain signals in disease pathology and treatment. In addition to enabling basic clinical neuroscience, the Picostim™-DyNeuMo can be configured to respond to physiological signals such as patient motion to explore therapy optimization.

The research team aim to identify biomarkers that signify the pathological state, and how these vary throughout the day/night cycle, and to ultimately develop ‘closed-loop’ stimulation patterns that optimise symptom management and improve sleep. 

Professor Denison said: 'Implantable stimulators provide a unique platform for enabling clinical neuroscience by providing 24/7 access to brain networks. Scientific instrumentation first serves to help understand disease pathology and can then be configured to prototype enhanced therapy options including customization for patient specific physiology and rhythms. The creation of fully implantable state of the art clinical research tools required cooperation between academics and industry to ensure the research instrumentation meets stringent regulatory standards, and the Picostim™-DyNeuMo research tool is the result of symbiotic collaboration with Bioinduction leveraging their Picostim™ platform.'

Professor Green added: 'This is an exciting time for medical device research in the UK. In the past, often clinicians would explore new indications for existing technology whilst engineers would build new systems in parallel. This collaboration aims to integrate the development of innovative technology with exploration of mechanisms underlying disease states from an early stage and will therefore increase our understanding of disease at the same time as trying to treat it. It is also a prime example of a multidisciplinary collaboration, academia and industry all working together with the same goals and bringing their strengths to the table.”

Ivor Gillbe, Director of Bioinduction, stated: 'This is an exciting time for Bioinduction and the UK bioelectronic medicines industry. Bioinduction’s mission is to enable a paradigm shift in the world of DBS implantations for those with chronic brain disorders. The team and partners have delivered a major milestone in the development of the next generation of elegant, evolutive cranialized brain pacemaker platform. Picostim™ harnesses state-of-the-art innovations and research enabling new possibilities to address significant unmet needs, initially focused on Parkinson’s Disease. Together, we can bring state-of-the-art neurotech innovation aiming to  improve the outcomes for the chronic neurodegenerative diseases by accelerating advanced research in  neuromodulation and bringing Picostim™ to the market for significant unmet needs in cerbrovascular and cognitive disorders.'

The trial is being supported by the University of Oxford and the Oxford University Hospitals NHS Foundation Trust, with input from Neurology (Dr Nagarajah Sarangmat) as well as Neuropsychology (Dr Simon Prangnell). Funding was provided from the UK government’s BEIS department through the Royal Academy of Engineering, the MRC Brain Networks Dynamic Unit, and the John Fell Fund at Oxford. Designed to be a configurable research platform, the team is now preparing funded trials using the Picostim™-DyNeuMo in post-stroke chronic pain, epilepsy, and disorders of consciousness.

The Picostim™ and Picostim™-DyNeuMo research platform are available for investigational use only and are not approved for use outside of clinical studies.

Deep brain stimulation (DBS) is an approved, safe, and effective treatment for patients with Parkinson's disease with motor symptoms that cannot be adequately controlled with medication. Over 200,000 people worldwide to date have received DBS systems.

The Picostim™ DBS system is the world’s first miniaturized skull-mountable DBS system currently in pivotal clinical study ‘SPARKS’, the impulse generator (IPG) being one third of the size of conventional DBS devices. This is a rechargeable DBS device, where the Picostim™ DBS system has been designed to enable a faster, single-stage, implantation procedure.

Skull-implantation eliminates the need for tunneled extension leads. Employing the best available technology and practice, the implantation procedure for a chest mounted IPG typically involves between five and seven hours (Stereotact Funct Neurosurg 2013) of surgical time in a multi-stage procedure. Picostim™ can be implanted in a single stage, without removing the stereotactic frame used to accurately position the electrodes, allowing for more optimal and efficient surgical workflow.

Similar stories

Oxford's largest ever study into varicose veins shows need for surgery is linked to genetics

Varicose veins are a very common manifestation of chronic venous disease, affecting over 30% of the population in Western countries. In America, chronic venous disease affects over 11 million men and 22 million women aged 40–80 years old. Left untreated it can escalate to multiple health complications including leg ulcers and ultimately amputations. A new international study by Oxford researchers published on 2 June 2022 in Nature Communications establishes for the first time, a critical genetic risk score to predict the likelihood of patients suffering with varicose veins to require surgery, as well as pointing the way towards potential new therapies.

New reporting guidelines developed to improve AI in healthcare settings

New reporting guidelines, jointly published in Nature Medicine and the BMJ by Oxford researchers, will ensure that early studies on using Artificial Intelligence (AI) to treat real patients will give researchers the information needed to develop AI systems safely and effectively.

Results of the REF 2021: congratulations and thank you

Today, the UK funding bodies have published the results of the UK’s most recent national research assessment exercise, the Research Excellence Framework (REF) 2021.

Blog posts

Oxford MedSci goes silver: 10 Years of Athena SWAN

The Medical Sciences Division is celebrating 10 years since its first Athena Swan bronze application, and the first year in which all 16 of its departments have achieved a silver award. The silver award recognises commitment to gender equality, understanding culture and context, and more. Read about our department’s hard work and innovation.

Lights, camera, action! My journey into video production

Dr Hannah McGivern provides a 'behind-the-scenes' account of her experience producing the video 'Journey of a QUOD Sample: Donating to Transplant Research', supported by the funds from the University of Oxford Public Engagement with Research (PER) Seed Fund.

Mentoring in practice

NDS has launched a new, interdepartmental mentoring scheme called RECOGNISE. In this podcast, Gemma Horbatowski (HR Advisor) interviews Monica Dolton (Programme Manager and Research Project Manager) about her experiences of mentor-mentee relationships.