Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

UK Research and Innovation, Cancer Research UK and industry are investing more than £11 million in an Oxford-led artificial intelligence (AI) research programme to improve the diagnosis of lung cancer and other thoracic diseases.

DART image data flow abstract

Professor Fergus Gleeson at the University of Oxford will lead on a programme of research focusing on accelerating pathways for the earlier diagnosis of lung cancer. Lung cancer is the biggest cause of cancer death in the UK and worldwide, with £307 million/year cost to the NHS in England. The earlier that lung cancer is diagnosed, the more likely that treatment will be successful but currently only 16% patients are diagnosed with the earliest stage of the disease. To address this clinical problem, NHS England is launching a £70 million lung cancer screening pilot programme at 10 sites.

To improve patient care beyond the current screening guidelines, a team of academics from Oxford University including Professor Clare Verrill of the Nuffield Department of Surgical Sciences, Nottingham University, and Imperial College London; NHS clinicians from Oxford University Hospitals NHS Trust, Nottingham University Hospitals NHS Trust, the Royal Marsden Hospital, the Royal Brompton Hospital, and University College London Hospitals NHS Foundation Trust; and the Roy Castle Lung Cancer Foundation will join forces with three leading industrial partners (Roche Diagnostics, GE Healthcare, Optellum).

Working with the NHS England Lung Health Check programme, clinical, imaging and molecular data will be combined for the first time using AI algorithms with the aim of more accurately and quickly diagnosing and characterising lung cancer with fewer invasive clinical procedures. Algorithms will also be developed to better evaluate risks from comorbidities such as chronic obstructive pulmonary disease (COPD). In addition, this programme will link to data from primary care to better assess risk in the general population to refine the right at-risk individuals to be selected for screening. It is hoped that this research will define a new set of standards for lung cancer screening to increase the number of lung cancers diagnosed at an earlier stage, when treatment is more likely to be successful.

Read more about how Oxford University is leading a new national programme of AI research to improve lung cancer screening (University of Oxford website)