Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Development of a robust automated platform for enrichment of extracellular vesicles from low sample volume that matches the needs for next-generation sequencing could remove major hurdles for genomic biomarker discovery. Here, we document a protocol for urinary EVs enrichment by utilizing an automated microfluidic system, termed acoustic trap, followed by next-generation sequencing of microRNAs (miRNAs) for biomarker discovery. Specifically, we compared the sequencing output from two small RNA library preparations, NEXTFlex and CATS, using only 130 pg of input total RNA. The samples prepared using NEXTflex was found to contain larger number of unique miRNAs that was the predominant RNA species whereas rRNA was the dominant RNA species in CATS prepared samples. A strong correlation was found between the miRNA expressions of the acoustic trap technical replicate in the NEXTFlex prepared samples, as well as between the acoustic trap and ultracentrifugation enrichment methods. Together, these results demonstrate a robust and automated strategy for biomarker discovery from small volumes of urine.

Original publication

DOI

10.1371/journal.pone.0217507

Type

Journal article

Journal

PLoS One

Publication Date

2019

Volume

14