Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The measurement of blood pressure (BP) is critical to the treatment and management of many medical conditions. High blood pressure is associated with many chronic disease conditions, and is a major source of mortality and morbidity around the world. For outpatient care as well as general health monitoring, there is great interest in being able to accurately and frequently measure BP outside of a clinical setting, using mobile or wearable devices. One possible solution is photoplethysmography (PPG), which is most commonly used in pulse oximetry in clinical settings for measuring oxygen saturation. PPG technology is becoming more readily available, inexpensive, convenient, and easily integrated into portable devices. Recent advances include the development of smartphones and wearable devices that collect pulse oximeter signals. In this article, we review (i) the state-of-the-art and the literature related to PPG signals collected by pulse oximeters, (ii) various theoretical approaches that have been adopted in PPG BP measurement studies, and (iii) the potential of PPG measurement devices as a wearable application. Past studies on changes in PPG signals and BP are highlighted, and the correlation between PPG signals and BP are discussed. We also review the combined use of features extracted from PPG and other physiological signals in estimating BP. Although the technology is not yet mature, it is anticipated that in the near future, accurate, continuous BP measurements may be available from mobile and wearable devices given their vast potential.

Original publication




Journal article


NPJ Digit Med

Publication Date





Data integration, Diagnostic markers, Electrocardiography - EKG, Predictive markers, Statistical methods