Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

High Intensity Focused Ultrasound (HIFU) capably bridges the disciplines of surgery, oncology and biomedical engineering science. It provides the precision associated with a surgical tool whilst remaining a truly non-invasive technique. Oxford has been a centre for both clinical and preclinical research in HIFU over the last twenty years. Research into this technology in the UK has a longer history, with much of the early research being carried out by Professor Gail ter Haar and her team at the Institute of Cancer Research at Sutton in Surrey. A broad range of potential applications have been explored extending from tissue ablation to novel drug delivery. This review presents Oxford's clinical studies and applications for the development of this non-invasive therapy. This includes treatment of solid abdominal tumours comprising those of the liver, kidney, uterus, pancreas, pelvis and prostate. It also briefly introduces preclinical and translational works that are currently being undertaken at the Institute of Biomedical Engineering, University of Oxford. The safety, wide tolerability and effectiveness of this technology is comprehensively demonstrated across these studies. These results can facilitate the incorporation of HIFU as a key clinical management strategy.

Original publication

DOI

10.1080/02656736.2021.1899311

Type

Journal article

Journal

Int J Hyperthermia

Publication Date

09/2021

Volume

38

Pages

81 - 88

Keywords

High intensity focused ultrasound, clinical applications, drug delivery, neoplasms, thermal ablation, Abdominal Neoplasms, Extracorporeal Shockwave Therapy, Female, High-Intensity Focused Ultrasound Ablation, Humans, Male