Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Prostate and mammary cancer bone metastases can be osteoblastic or osteolytic, but the mechanisms determining these features are unclear. Bone morphogenetic and Wnt proteins are osteoinductive molecules. Their activity is modulated by antagonists such as noggin and dickkopf-1. Differential expression analysis of bone morphogenetic and Wnt protein antagonists in human prostate and mammary cancer cell lines showed that osteolytic cell lines constitutively express in vitro noggin and dickkopf-1 and at least one of the osteolytic cytokines parathyroid hormone-related protein, colony-stimulating factor-1, and interleukin-8. In contrast, osteoinductive cell lines express neither noggin nor dickkopf-1 nor osteolytic cytokines in vitro. The noggin differential expression profile observed in vitro was confirmed in vivo in prostate cancer cell lines xenografted into bone and in clinical samples of bone metastasis. Forced noggin expression in an osteoinductive prostate cancer cell line abolished the osteoblast response induced in vivo by its intraosseous xenografts. Basal bone resorption and tumor growth kinetics were marginally affected. Lack of noggin and possibly dickkopf-1 expression by cancer cells may be a relevant mechanism contributing to the osteoblast response in bone metastases. Concomitant lack of osteolytic cytokines may be permissive of this effect. Noggin is a candidate drug for the adjuvant therapy of bone metastasis.

Original publication

DOI

10.2353/ajpath.2007.051276

Type

Journal

Am J Pathol

Publication Date

01/2007

Volume

170

Pages

160 - 175

Keywords

Animals, Bone Morphogenetic Proteins, Bone Neoplasms, Breast Neoplasms, Carrier Proteins, Cell Differentiation, Cell Proliferation, Cytokines, Female, Gene Expression Regulation, Neoplastic, Humans, Intercellular Signaling Peptides and Proteins, Male, Mice, Mice, Inbred BALB C, Mice, SCID, Neoplasm Transplantation, Osteoblasts, Osteoclasts, Prostatic Neoplasms