Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Prion diseases are a group of invariably fatal neurodegenerative disorders that include Creutzfeldt-Jakob disease in humans, scrapie in sheep and goats, and bovine spongiform encephalopathy in cattle. The infectious agent or prion is largely composed of an abnormal isoform (PrPSc) of a host encoded normal cellular protein (PrPc). The conversion of PrPc to PrPSc is a dynamic process and, for reasons that are not clear, the distribution of spongiform change and PrPSc deposition varies among prion strains. An obvious explanation for this would be that the transformation efficiency in any given brain region depends on favourable interactions between conformations of PrPc and the prion strain being propagated within it. However, identification of specific PrPc conformations has until now been hampered by a lack of suitable panels of antibodies that discriminate PrPc subspecies under native conditions. In this study, we show that monoclonal antibodies raised against recombinant human prion protein folded into alpha or beta conformations exhibit striking heterogeneity in their specificity for truncations and glycoforms of mouse brain PrPc. We then show that some of these PrPc isoforms are expressed differentially in certain mouse brain regions. This suggests that variation in the expression of PrPc conformations in different brain regions may dictate the pattern of PrPSc deposition and vacuolation, characteristic for different prion strains.

Original publication




Journal article



Publication Date





2065 - 2073


Animals, Antibodies, Monoclonal, Brain, Enzyme-Linked Immunosorbent Assay, Epitope Mapping, Glycosylation, Mice, Mice, Inbred Strains, PrPC Proteins, Precipitin Tests, Protein Isoforms