Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

PURPOSE: Despite recent advances, approximately 50% of patient with metastatic melanoma eventually succumb to the disease. Patients with melanomas harboring a BRAF mutation (BRAFMut) have a worse prognosis than those with wildtype (BRAFWT) tumors. Unexpectedly, interim AVAST-M Phase III trial data reported benefit from adjuvant anti-VEGF bevacizumab only in the BRAFMut group. We sought to find mechanisms underpinning this sensitivity. METHODS: We investigated this finding in vitro and in vivo using melanoma cell lines and clones generated by BRAFV600E knock-in on a BRAFWT background. RESULTS: Compared with BRAFWT cells, isogenic BRAFV600E clones secreted more VEGF and exhibited accelerated growth rates as spheroids and xenografts, which were more vascular and proliferative. Recapitulating AVAST-M findings, bevacizumab affected only BRAFV600E xenografts, inducing significant tumor growth delay, reduced vascularity and increased necrosis. We identified 814 differentially expressed genes in isogenic BRAFV600E/BRAFWT clones. Of 61 genes concordantly deregulated in clinical melanomas ROR2 was one of the most upregulated by BRAFV600E. ROR2 was shown to be RAF-MEK regulated in BRAFV600E cells and its depletion suppressed VEGF secretion down to BRAFWT levels. The ROR2 ligand WNT5A was also overexpressed in BRAFMut melanomas, and in ROR2-overexpressing BRAFV600E cells MEK inhibition downregulated WNT5A and VEGF secretion. CONCLUSIONS: These data implicate WNT5A-ROR2 in VEGF secretion, vascularity, adverse outcomes and bevacizumab sensitivity of BRAFMut melanomas, suggesting that this axis has potential therapeutic relevance.

Original publication




Journal article


Cell Oncol (Dordr)

Publication Date





391 - 407


BRAF, Bevacizumab, Melanoma, ROR2, WNT5A, Humans, Bevacizumab, Cell Line, Tumor, Melanoma, Mitogen-Activated Protein Kinase Kinases, Mutation, Proto-Oncogene Proteins B-raf, Receptor Tyrosine Kinase-like Orphan Receptors, Wnt-5a Protein, Vascular Endothelial Growth Factor A