Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Parkinson's disease (PD) may involve sudden unintended arrests in gait or failure to initiate gait, known as gait freezing. Deep brain stimulation of the pedunculopontine nucleus (PPN) has been found to be an effective therapy for this phenomenon. In this study, we characterized the connectivity of the PPN freezing of gait (FOG) patients, compared with non-FOG PD and healthy controls using diffusion tensor imaging techniques. Differences in PPN connectivity profiles of the study groups were shown in the cerebellum and pons. The PPN showed connectivity with the cerebellum in controls and non-FOG PD. FOG patients showed absence of cerebellar connectivity, and increased visibility of the decussation of corticopontine fibres in the anterior pons. The findings suggest that corticopontine projections, which cross at the pons are increased in gait freezing, highlighting the importance and role of corticopontine-cerebellar pathways in the pathophysiology of this phenomenon.

Original publication

DOI

10.1097/WNR.0b013e32833ce5f1

Type

Journal article

Journal

Neuroreport

Publication Date

06/10/2010

Volume

21

Pages

914 - 916

Keywords

Deep Brain Stimulation, Diffusion Tensor Imaging, Gait Disorders, Neurologic, Humans, Parkinsonian Disorders, Pedunculopontine Tegmental Nucleus