Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: We investigated the ability of the isolated porcine liver to maintain acid-base homeostasis in the perfusate and the impact of ischemia-reperfusion injury without or with extracorporeal perfusion. METHODS: Harvested livers were either stored for 24 hours in cold University of Wisconsin solution or preserved by continuous, normothermic, oxygenated sanguineous perfusion with supplemental nutrition, prostacyclin, and bile salts. After a further 24-hour period of reperfusion of both groups on an extracorporeal circuit, the perfusate was assessed for both biochemical indices of synthetic and metabolic liver function as well as hepatocellular injury and blood gas analysis. RESULTS: Livers injured by cold ischemia during preservation displayed inferior synthetic and metabolic functions. Perfused livers, which displayed minimal ischemic injury, produced more bicarbonate than the cold-stored organs, suggesting autoregulation of pH homeostasis in perfused livers in contrast to progressively worsening acidosis in cold-stored organs. CONCLUSIONS: Given proper physiologic substrate the porcine liver has the ability to maintain acid-base homeostasis, provided there is not a significant ischemia-reperfusion injury.


Journal article


Transplant Proc

Publication Date





1587 - 1590


Adenosine, Allopurinol, Animals, Glutathione, Homeostasis, Hydrogen-Ion Concentration, In Vitro Techniques, Insulin, Liver, Liver Circulation, Models, Animal, Organ Preservation, Organ Preservation Solutions, Perfusion, Raffinose, Swine, Time Factors, Tissue and Organ Harvesting, Urea