Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Non-heart-beating donor (NHBD) livers represent an important organ pool, but are seldom utilized clinically and require rapid retrieval and implantation. Experimental work with oxygenated perfusion during preservation has shown promising results by recovering function in these livers. This study compared sanguinous perfusion with cold storage for extended preservation of the NHBD liver in a porcine model. METHODS: Porcine livers were subjected to 60 min of in vivo total warm ischaemia before flushing, after which they were preserved by one of two methods: group 1 (n = 4), University of Wisconsin (UW) solution by standard cold storage for 24 h; group 2 (n = 4), oxygenated autologous blood perfusion on an extracorporeal circuit for 24 h. All livers were subsequently tested on the circuit during a 24-h reperfusion phase. RESULTS: Livers in group 1 showed no evidence of viability during the reperfusion phase with no bile production or glucose utilization; they also displayed massive necrosis. Livers in group 2 demonstrated recovery of function by synthetic function, substrate utilization and perfusion haemodynamics; these livers displayed less cellular injury by hepatocellular enzymes. All differences in parameters between the two groups were statistically significant (P < 0.05). These findings were supported by histological examination. CONCLUSION: Warm ischaemia for 1 h and simple cold storage (UW solution) for 24 h renders the liver non-viable. Oxygenated, sanguinous perfusion as a method of preservation recovers liver function to a viable level after 24 h of preservation.

Original publication




Journal article


Br J Surg

Publication Date





609 - 616


Animals, Blood Gas Analysis, Cold Temperature, Hemodynamics, Hemolysis, Hepatocytes, Hot Temperature, Liver, Liver Transplantation, Organ Preservation, Reperfusion, Swine, Tissue Donors, Tissue and Organ Procurement