Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND AND PURPOSE: Both the existence and clinical relevance of a steal phenomenon in brain arteriovenous malformations (AVMs) remains a matter of debate. This study aimed to assess perfusion in the brain adjacent to brain AVMs and to relate these to macrovascular blood flow in a single measurement. MATERIALS AND METHODS: Twenty consecutive patients with AVMs with a median age of 37 years were evaluated by 3T MR imaging by using 3D time-resolved MR angiography to determine blood flow and perfusion patterns. Cerebral perfusion was estimated by using an arterial spin-labeling technique in vascular territories around the nidus and in symmetric regions of interest in the ipsilateral and contralateral hemispheres. Mapping of concentric shells around the nidus was used to define the immediate and adjacent brain and relative perfusion reductions >20% of baseline, termed perinidal dip (PND). RESULTS: A significant reduction in perfusion ratios between ipsilateral and contralateral hemispheres remote to the AVMs was demonstrated in the middle and posterior cerebral artery territories. PND was detected in 5 patients, and 17 patients overall showed reduced perfusion in the perinidal region on visual inspection. There was a negative correlation of the hemispheric territorial perfusion with the affected/nonaffected inflow time ratio (R = -0.402, P = .015). CONCLUSIONS: The perfusion impairment in vascular territories adjacent to brain AVMs that we identified as PND may reflect the existence of 2 levels of perfusion impairment: a territorial and a microvascular perfusion disturbance. Although the hemispheric asymmetry in territorial perfusion seems the result of arterioarterial redistribution, the PND was inhomogeneously distributed within a single vascular territory and thus might result from low perfusion pressure in small arteries and arterioles.

Original publication

DOI

10.3174/ajnr.A1351

Type

Journal article

Journal

AJNR Am J Neuroradiol

Publication Date

02/2009

Volume

30

Pages

356 - 361

Keywords

Adolescent, Adult, Angiography, Digital Subtraction, Arteriovenous Malformations, Blood Flow Velocity, Cerebral Angiography, Cerebrovascular Circulation, Female, Functional Laterality, Humans, Magnetic Resonance Angiography, Male, Microcirculation, Middle Aged