Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Deep brain stimulation (DBS) has been used to treat intractable pain for over 50 years. Variations in targets and surgical technique complicate the interpretation of many studies. To better understand its efficacy, we performed a meta-analysis of DBS for pain relief. MEDLINE (1966 to February 2003) and EMBASE (1980 to January 2003) databases were searched using key words deep brain stimulation, sensory thalamus, periventricular gray and pain. Inclusion criteria were based on patient characteristics and protocol clarity. Six studies (between 1977-1997) fitting the criteria were identified. Stimulation sites included the periventricular/periaqueductal grey matter (PVG/PAG), internal capsule (IC), and sensory thalamus (ST). The long-term pain alleviation rate was highest with DBS of the PVG/PAG (79%), or the PVG/PAG plus sensory thalamus/internal capsule (87%). Stimulation of the sensory thalamus alone was less effective (58% long-term success) (p < 0.05). DBS was more effective for nociceptive than deafferentation pain (63% vs 47% long-term success; p < 0.01). Long-term success was attained in over 80% of patients with intractable low back pain (failed back surgery) following successful trial stimulation. Trial stimulation was successful in approximately 50% of those with post-stroke pain, and 58% of patients permanently implanted achieved ongoing pain relief. Higher rates of success were seen with phantom limb pain and neuropathies. We conclude that DBS is frequently effective when used in well-selected patients. Neuroimaging and neuromodulation technology advances complicate the application of these results to modern practice. Ongoing investigations should shed further light on this complex clinical conundrum.

Original publication




Journal article


J Clin Neurosci

Publication Date





515 - 519


Animals, Brain, Deep Brain Stimulation, Denervation, Humans, Internal Capsule, Pain, Intractable, Pain, Postoperative, Periaqueductal Gray, Phantom Limb, Thalamus, Treatment Outcome