Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Otitis media (OM) is among the most common illnesses of early childhood, characterised by the presence of inflammation in the middle ear cavity. Acute OM and chronic OM with effusion (COME) affect the majority of children by school age and have heritability estimates of 40-70%. However, the majority of genes underlying this susceptibility are, as yet, unidentified. One method of identifying genes and pathways that may contribute to OM susceptibility is to look at mouse mutants displaying a comparable phenotype. Single-gene mouse mutants with OM have identified a number of genes, namely, Eya4, Tlr4, p73, MyD88, Fas, E2f4, Plg, Fbxo11, and Evi1, as potential and biologically relevant candidates for human disease. Recent studies suggest that this "mouse-to-human" approach is likely to yield relevant data, with significant associations reported between polymorphisms at the FBXO11, TLR4, and PAI1 genes and disease in humans. An association between TP73 and chronic rhinosinusitis has also been reported. In addition, the biobanks of available mouse mutants provide a powerful resource for functional studies of loci identified by future genome-wide association studies of OM in humans. Mouse models of OM therefore are an important component of current approaches attempting to understand the complex genetic susceptibility to OM in humans, and which aim to facilitate the development of preventative and therapeutic interventions for this important and common disease.

Original publication

DOI

10.1007/s00335-010-9295-1

Type

Journal article

Journal

Mamm Genome

Publication Date

02/2011

Volume

22

Pages

66 - 82

Keywords

Animals, Disease Models, Animal, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Mice, Otitis Media