Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In recent years, technological advances in tissue preparation, high-throughput volumetric microscopy, and computational infrastructure have enabled rapid developments in nondestructive 3D pathology, in which high-resolution histologic datasets are obtained from thick tissue specimens, such as whole biopsies, without the need for physical sectioning onto glass slides. While 3D pathology generates massive datasets that are attractive for automated computational analysis, there is also a desire to use 3D pathology to improve the visual assessment of tissue histology. In this perspective, we discuss and provide examples of potential advantages of 3D pathology for the visual assessment of clinical specimens and the challenges of dealing with large 3D datasets (of individual or multiple specimens) that pathologists have not been trained to interpret. We discuss the need for artificial intelligence triaging algorithms and explainable analysis methods to assist pathologists or other domain experts in the interpretation of these novel, often complex, large datasets.

Original publication

DOI

10.1002/cjp2.347

Type

Journal article

Journal

J Pathol Clin Res

Publication Date

02/11/2023

Keywords

digital pathology, light-sheet microscopy, nondestructive 3D pathology, prognosis, prostate cancer