Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Cerebral aneurysm is common lesion among adult population. Current methods for treating the disease have several limitations. Inspired by fern leaves, we have developed a new stent, called leaf stent, which can provide a tailored coverage at the neck of an aneurysm and thus prevent the blood from entering the aneurysm. It alone can be used to treat the cerebral aneurysm and therefore overcomes problems existing in current treating methods. The paper focuses on the numerical simulation of the leaf stents. The mechanical behaviour of the stent in various designs has been investigated using the finite element method. It has been found that certain designs provide adequate radial force and have excellent longitudinal flexibility. The performance of certain leaf stents is comparable and even superior to those of the commercially available cerebral stents such as the Neuroform stent and the Enterprise stent, commonly used for stent assisted coiling, while at the same time, providing sufficient coverage to isolate the aneurysm without using coils.

Original publication




Journal article


Smart Structures and Systems

Publication Date





1 - 15