The isolated perfused rat liver: standardization of a time-honoured model.
Bessems M., 't Hart NA., Tolba R., Doorschodt BM., Leuvenink HGD., Ploeg RJ., Minor T., van Gulik TM.
For many years, the isolated perfused rat liver (IPRL) model has been used to investigate the physiology and pathophysiology of the rat liver. This in vitro model provides the opportunity to assess cellular injury and liver function in an isolated setting. This review offers an update of recent developments regarding the IPRL set-up as well as the viability parameters that are used, with regards to liver preservation and ischaemia and reperfusion mechanisms.A review of the literature was performed into studies regarding liver preservation or liver ischaemia and reperfusion. An overview of the literature is given with particular emphasis on perfusate type and volume, reperfusion pressure, flow, temperature, duration of perfusion, oxygenation and on applicable viability parameters (liver damage and function). The choice of IPRL set-up depends on the question examined and on the parameters of interest. A standard technique is cannulation of the portal vein, bile duct and caval vein with pressure-controlled perfusion at 20 cm H2O (15 mmHg) to reach a perfusion flow of approximately 3 mL/min/g liver weight. The preferred perfusion solution is Krebs-Henseleit buffer, without albumin. The usual volume is 150-300 cm3, oxygenated to a pO2 of more than 500 mmHg. The temperature of the perfusate is maintained at 37 degrees C. Standardized markers should be used to allow comparison with other experiments.