Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Hypothermic machine perfusion (HMP) provides better protection against ischemic damage of the kidney compared to cold-storage. The required perfusion pressures needed for optimal HMP of the liver are, however, unknown. Rat livers were preserved in University of Wisconsin organ preservation solution enriched with acridine orange (AO) to stain viable cells and propidium iodide (PI) to detect dead cells. Perfusion pressures of 12.5%, 25% or 50% of physiologic perfusion pressures were compared. Intravital fluorescence microscopy was used to assess liver perfusion by measuring the percentage of AO staining. After 1-h, the perfusion pressure of 12.5% revealed 72% +/- 3% perfusion of mainly the acinary zones one and two. The perfusion pressure of 25% and 50% showed complete perfusion. Furthermore, 12.5% showed 14.7 +/- 3.6, 25% showed 3.7 +/- 0.9, and 50% showed 11.2 +/- 1.4 PI positive cells. One hour was followed by another series of experiments comprising 24-h preservation. In comparison with 24-h cold-storage, HMP at 25% showed less PI positive cells and HMP at 50% showed more PI positive cells. In summary, perfusion at 25% showed complete perfusion, demonstrated by AO staining, with minimal cellular injury, shown with PI. This study indicates that fine-tuning of the perfusion pressure is crucial to balance (in)complete perfusion and endothelial injury.

Original publication

DOI

10.1111/j.1432-2277.2006.00433.x

Type

Journal article

Journal

Transpl Int

Publication Date

04/2007

Volume

20

Pages

343 - 352

Keywords

Acridine Orange, Animals, Cell Survival, Hypothermia, Induced, Liver, Male, Microscopy, Fluorescence, Organ Preservation, Perfusion, Pressure, Propidium, Rats, Staining and Labeling