Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

OBJECTIVE: To study graft function and ischemia/reperfusion injury of porcine kidneys after preservation with the new Groningen Machine Perfusion (GMP) system versus static cold storage (CS). INTRODUCTION: The increasing proportion of marginal and nonheart beating donors necessitates better preservation methods to maintain adequate graft viability. Hypothermic machine preservation (HMP) is a promising alternative to static CS. We have therefore developed and tested an HMP device, which is portable and actively oxygenates the perfusate via an oxygenator. The aim of the present study was to examine the efficacy of the GMP system in a transplantation experiment. MATERIALS AND METHODS: In a porcine autotransplantation model, kidneys were retrieved and either cold stored in University of Wisconsin CS for 20 hours at 4 degrees C or subjected to HMP using University of Wisconsin machine perfusion at 4 degrees C with 2 different pressure settings: 30/20 mm Hg or 60/40 mm Hg. RESULTS: HMP at 30/20 mm Hg was found to better preserve the viability of kidneys reflected by improved cortical microcirculation, less damage to the proximal tubule, less damage mediated by reactive oxygen species, less proinflammatory cytokine expression, and better functional recovery after transplantation. However, high perfusion pressures (60/40 mm Hg) resulted in higher expression of von Willebrand factor and monocyte chemotactic peptide-1 in postpreservation biopsies and subsequent graft thrombosis in 2 kidneys. CONCLUSIONS: It is concluded that the GMP system improves kidney graft viability and perfusion pressures are critically important for outcome.

Original publication




Journal article


Ann Surg

Publication Date





982 - 988


Animals, Biopsy, Disease Models, Animal, Equipment Design, Female, Hypothermia, Induced, Kidney Cortex, Kidney Transplantation, Microcirculation, Organ Preservation, Perfusion, Recovery of Function, Renal Circulation, Reperfusion Injury, Swine, Transplantation, Autologous, Treatment Outcome