Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

To overcome the present shortage of liver donors by expansion of the existing donor pool and possibly lengthening of the storage time, hypothermic machine perfusion of the liver as a dynamic preservation method is revisited. The three most important aspects are defined to be the type of preservation solution, the characteristics of perfusion dynamics, and the oxygen supply. Reviewing hypothermic liver machine perfusion experiments, the University of Wisconsin machine preservation solution is the solution most used. It is also found that nothing conclusive can be said about the optimal perfusion characteristics, since either perfusion pressure or perfusion flow is reported. The best estimation is perfusion of the liver in a physiological manner, i.e. pulsatile arterial perfusion and continuous portal venous perfusion. The applied pressures could be chosen to be somewhat lower than physiological pressures to prevent possible endothelial cell damage. Oxygen supply is necessary to achieve optimal preservation of the liver. The minimal amount of partial oxygen pressure required is inversely related to the normalized flow. Incorporating these features in a system based on existing standard surgical and organ sharing procedures and which is able to work stand-alone for 24 h, weighing less than 23 kg, could successfully implement this technique into every day clinical practise.

Original publication

DOI

10.1023/b:abme.0000019181.18194.51

Type

Journal article

Journal

Ann Biomed Eng

Publication Date

04/2004

Volume

32

Pages

623 - 631

Keywords

Cryopreservation, Humans, Liver, Liver Transplantation, Oxygen, Perfusion, Quality Control, Tissue Donors