Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Consistent difference in graft survival after renal transplantation has been shown when cadaveric transplants are compared to the living related donor situation, in favor of the latter. Recently, evidence has been put forward that brain death has significant effects on the donor organ quality. In this study, we aimed to assess the relation between brain death-induced hemodynamic instability in combination with the duration of brain death on the function and immunogenicity status of potential donor kidneys. METHODS: In Wistar rats, short-term (1 hour) or long-term (6 hours) brain death in the presence or absence of hemodynamic stability was applied. Sham-operated rats served as controls (1 hour and 6 hours). Organ function was studied by monitoring serum creatinine, lactate dehydrogenase (LDH), lactate, and total protein content. Expression of cell adhesion molecules [intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1)] and the influx of leukocytes in the kidney assessed the immunologic status of the kidney. RESULTS: Progressive organ dysfunction was most pronounced in hemodynamically unstable brain-dead donors reflected by increased serum creatinine levels. Regardless of hemodynamic status, a progressive inflammatory activation by cell adhesion molecule expression and an influx of leukocytes could be observed in kidneys of brain-dead rats compared with nonbrain-dead controls. CONCLUSION: Brain death causes progressive kidney dysfunction. Also, inflammatory responses reflecting tissue injury are caused by brain death. When hemodynamic instability in the brain-dead donor is not corrected, kidney dysfunction is enhanced and immune activation occurs faster and is more profound. The observed changes may predispose the graft for additional ischemia/reperfusion injury during the transplant process and hence accelerate rejection of the graft after transplantation.

Original publication




Journal article


Kidney Int

Publication Date





1874 - 1882


Animals, Blood Pressure, Brain Death, Endothelial Cells, Graft Survival, Heart Rate, Immunohistochemistry, Kidney, Kidney Transplantation, Leukocytes, Male, Rats, Rats, Wistar, Time Factors