Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Nutrient enrichment and climate warming threaten freshwater systems. Metabolic theory and the paradox of enrichment predict that both stressors independently can lead to simpler food‐webs having fewer nodes, shorter food‐chains and lower connectance, but cancel each other's effects when simultaneously present. Yet, these theoretical predictions remain untested in complex natural systems. We inferred the food‐web structure of 256 lakes and 373 streams from standardized fish community samplings in France. Contrary to theoretical predictions, we found that warming shortens fish food‐chain length and that this effect was magnified in enriched streams and lakes. Additionally, lakes experiencing enrichment exhibit lower connectance in their fish food‐webs. Our study suggests that warming and enrichment interact to magnify food‐web simplification in nature, raising further concerns about the fate of freshwater systems as climate change effects will dramatically increase in the coming decades.

Original publication

DOI

10.1111/ele.14480

Type

Journal article

Journal

Ecology Letters

Publisher

Wiley

Publication Date

02/08/2024

Volume

27

Keywords

lake, biochemical oxygen demand, trophic interaction, maximum trophic level, connectance, stream, fish