Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Previous studies indicated different roles of collagenase class I, class II and neutral protease in the enzymatic islet release from pancreatic tissue. Because no information has been available, this study was aimed to investigate the isolation efficiency of different ratios between collagenase class II and I (C-ratio) in the rat pancreas serving as model for the human pancreas without being restricted by the large variability observed in human donors. METHODS: Rat pancreata were digested using a marginal neutral protease activity and 20 PZ-U of purified collagenase classes recombined to create a C-ratio of 0.5, 1.0, or 1.5. Collagenase efficiency was evaluated in terms of isolation outcome and posttransplantation function in diabetic nude mice. RESULTS: The highest yield of freshly isolated islets was obtained using a C-ratio of 1.0. Purity and fragmentation of freshly isolated islets were not influenced by the C-ratio. After 24-hr culture performed for quality assessment, a marginal but significant reduction of viability was observed in islets isolated by means of a C-ratio of 0.5 and 1.5. Islet in vitro and posttransplantation function revealed no negative effect mediated by different C-ratios. CONCLUSIONS: The present study demonstrates that the C-ratio is of significant relevance for the outcome after enzymatic rat islet isolation. The data indicate further that purified collagenase class I or class II does not damage islet tissue even if used in excess. The present study can serve as a start for subsequent experiments in the human pancreas.

Original publication

DOI

10.1097/TP.0b013e31816050c8

Type

Journal article

Journal

Transplantation

Publication Date

15/02/2008

Volume

85

Pages

456 - 461

Keywords

Animals, Cell Separation, Chromatography, High Pressure Liquid, Collagenases, Histocompatibility Antigens Class I, Histocompatibility Antigens Class II, Islets of Langerhans, Male, Rats, Rats, Inbred Lew