Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The enzymatic dissociation of acinar tissue by collagenase is a substantial step in the isolation of pancreatic islets. Although essential collagenase components have been purified, the variability in the activity of different batches limits long-term reproducibility of isolation success. The utilization of purified recombinant proteases would solve this problem. In the present study, pancreases from multiorgan donors were dissociated by means of digestion-filtration using either Liberase HI (n = 51) or a recombinant collagenase blend (n = 25). No significant differences were found regarding islet yield before and after purification, the percent of exocrine-attached islets, and final purity. However, the ratio between islet equivalents and islet numbers indicated a lesser fragmentation in islets isolated with recombinant collagenase (P < 0.01). In contrast, viability was slightly higher in islets isolated with Liberase (92.3 +/- 0.8 vs. 85.6 +/- 2.9%; P < 0.05). Insulin release during static glucose incubation was not different between experimental groups. Islet transplantation into diabetic nude mice resulted in sustained normoglycemia in either group until the graft was removed. These results demonstrated that viable human islets can be isolated using recombinant collagenase. Final optimization of this enzyme blend would offer continuous reproducibility of isolation success.

Original publication

DOI

10.2337/diabetes.52.5.1143

Type

Journal article

Journal

Diabetes

Publication Date

05/2003

Volume

52

Pages

1143 - 1146

Keywords

Animals, Cell Fractionation, Collagenases, Humans, Indicators and Reagents, Ischemia, Islets of Langerhans, Islets of Langerhans Transplantation, Mice, Mice, Nude, Middle Aged, Organ Size, Pancreas, Perfusion, Recombinant Proteins, Subrenal Capsule Assay, Thermolysin, Tissue and Organ Harvesting, Transplantation, Heterologous