Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Regulatory T cells (T(reg)) are currently being tested in clinical trials as a potential therapy in cell and solid organ transplantation. The immunosuppressive drug rapamycin has been shown to preferentially promote T(reg) expansion. Here, we hypothesized that adjunctive rapamycin therapy might potentiate the ability of ex vivo expanded human T(reg) to inhibit vascular allograft rejection in a humanized mouse model of arterial transplantation. We studied the influence of combined treatment with low-dose rapamycin and subtherapeutic T(reg) numbers on the development of transplant arteriosclerosis (TA) in human arterial grafts transplanted into immunodeficient BALB/cRag2(-/-) Il2rg(-/-) mice reconstituted with allogeneic human peripheral blood mononuclear cell. In addition, we assessed the effects of the treatment on the proliferation and apoptosis of naïve/effector T cells. The combined therapy efficiently suppressed T-cell proliferation in vivo and in vitro. Neointima formation in the human arterial allografts was potently inhibited compared with each treatment alone. Interestingly, CD4(+) but not CD8(+) T lymphocytes were sensitive to T(reg) and rapamycin-induced apoptosis in vitro. Our data support the concept that rapamycin can be used as an adjunctive therapy to improve efficacy of T(reg)-based immunosuppressive protocols in clinical practice. By inhibiting TA, T(reg) and rapamycin may prevent chronic transplant dysfunction and improve long-term allograft survival.

Original publication

DOI

10.1111/j.1600-6143.2012.04065.x

Type

Journal article

Journal

Am J Transplant

Publication Date

08/2012

Volume

12

Pages

2008 - 2016

Keywords

Animals, Apoptosis, Arteries, Arteriosclerosis, Cell Proliferation, Dose-Response Relationship, Drug, Humans, Mice, Mice, Inbred BALB C, Sirolimus, T-Lymphocytes, Regulatory, Transplantation