Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

INTRODUCTION: This paper reviews the evidence in support of the hypothesis that the trigeminal system mediates brain swelling associated with subdural bleeding. The trigeminovascular system has been extensively studied in migraine; it may play an important but under-recognized role in the response to head trauma. Nerve fibers originating in trigeminal ganglion cells are the primary sensors of head trauma and, through their collateral innervation of the intracranial and dural blood vessels, are capable of inciting a cascade of vascular responses and brain swelling. The extensive trigeminal representation in the brainstem initiates and augments autonomic responses. Blood and tissue injury in the dura incite neurogenic inflammatory responses capable of sensitizing dural nerves and potentiating the response to trauma. DISCUSSION: The trigeminal system may provide the anatomo-physiological link between small-volume, thin subdural bleeds and swelling of the underlying brain. This physiology may help to explain the poorly understood phenomena of "second-impact syndrome," the infant response to subdural bleeding (the "big black brain"), as well as post-traumatic subdural effusions. Considerable age-specific differences in the density of dural innervation exist; age-specific responses of this innervation may explain differences in the brain's response to trauma in the young. An understanding of this pathophysiology is crucial to the development of intervention and treatment of these conditions. Antagonists to specific neuropeptides of the trigeminal system modify brain swelling after trauma and should be further explored as potential therapy in brain trauma and subdural bleeding.

Original publication

DOI

10.1007/s00381-012-1870-1

Type

Journal article

Journal

Childs Nerv Syst

Publication Date

12/2012

Volume

28

Pages

2005 - 2015

Keywords

Adolescent, Brain Edema, Brain Injuries, Cerebrovascular Circulation, Child, Child, Preschool, Hematoma, Subdural, Humans, Infant, Infant, Newborn, Inflammation, Subdural Effusion, Trigeminal Nerve