Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

AIMS/HYPOTHESIS: The aim of this study was to characterise electrical activity, ion channels, exocytosis and somatostatin release in human delta cells/pancreatic islets. METHODS: Glucose-stimulated somatostatin release was measured from intact human islets. Membrane potential, currents and changes in membrane capacitance (reflecting exocytosis) were recorded from individual human delta cells identified by immunocytochemistry. RESULTS: Somatostatin secretion from human islets was stimulated by glucose and tolbutamide and inhibited by diazoxide. Human delta cells generated bursting or sporadic electrical activity, which was enhanced by tolbutamide but unaffected by glucose. Delta cells contained a tolbutamide-insensitive, Ba(2+)-sensitive inwardly rectifying K(+) current and two types of voltage-gated K(+) currents, sensitive to tetraethylammonium/stromatoxin (delayed rectifying, Kv2.1/2.2) and 4-aminopyridine (A current). Voltage-gated tetrodotoxin (TTX)-sensitive Na(+) currents contributed to the action potential upstroke but TTX had no effect on somatostatin release. Delta cells are equipped with Ca(2+) channels blocked by isradipine (L), omega-agatoxin (P/Q) and NNC 55-0396 (T). Blockade of any of these channels interferes with delta cell electrical activity and abolishes glucose-stimulated somatostatin release. Capacitance measurements revealed a slow component of depolarisation-evoked exocytosis sensitive to omega-agatoxin. CONCLUSIONS/INTERPRETATION: Action potential firing in delta cells is modulated by ATP-sensitive K(+)-channel activity. The membrane potential is stabilised by Ba(2+)-sensitive inwardly rectifying K(+) channels. Voltage-gated L- and T-type Ca(2+) channels are required for electrical activity, whereas Na(+) currents and P/Q-type Ca(2+) channels contribute to (but are not necessary for) the upstroke of the action potential. Action potential repolarisation is mediated by A-type and Kv2.1/2.2 K(+) channels. Exocytosis is tightly linked to Ca(2+)-influx via P/Q-type Ca(2+) channels. Glucose stimulation of somatostatin secretion involves both K(ATP) channel-dependent and -independent processes.

Original publication




Journal article



Publication Date





1566 - 1578


Diazoxide, Exocytosis, Glucose, Humans, Islets of Langerhans, Membrane Potentials, Patch-Clamp Techniques, Pyrimidines, RNA, Reverse Transcriptase Polymerase Chain Reaction, Somatostatin, Somatostatin-Secreting Cells, Tolbutamide